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Source-sensor relationship

Stationary plume from continuous point source 

with constant release rate

Source parameters to estimate: x,y,z,q

Forward model plume: fixed source, sensor 

positions at grid points

Adjoint model plume: fixed sensor, source 

positions at grid points

Adoint model usually preferred for source 

estimation for computational efficiency



Model and measured data

Sensors numbered i=1,2,3,4

Model data:  ci=q χi(x,y,z)

χi(x,y,z) grid function,  adjoint plume for sensor i

Model data vector c = [c1,c2,c3,c4]

Measured data vector d = [d1,d2,d3,d4]

Adjoint plume vector function

χ = [χ1(x,y,z), χ2(x,y,z), χ3(x,y,z), χ4(x,y,z)]



The source estimation problem

Optimization problem 

Find (x,y,z,q) minimizing distance between

model data vector c(x,y,z,q) and measured

data vector d

Methods differ by 

how distance is defined

numerical method for approximating (x,y,z,q) 



Distance functions

Issartel’s renormalization distance: a weighted

Euclidean norm based on the 

visibility function φ:

(d – c)T Hφ
-1 (d – c)

Normalized Euclidean distance (Mahalanobis

distance) D: D2= Σi (di - ci)
2/ci

2



Visibility function and weights

The visibility function φ(x,y,z) is constructed

from the adjoint plumes χi for all sensors by an 

entropy minimization principle

Measuring the ”visibility” from the sensor 

network

The elements of the weight matrix Hφ are

computed by numerical integration of products

χi χj /φ.



Computational procedure
By the particular properties of φ, the problem is 

reduced to a simpler maximization problem:

Compute distributed renormalization source: 

σ = dTHφ
-1χ

on grid.

Compute point source location (x,y,z):

σ(x,y,z) = max σ

Compute point source release rate:

q = σ(x,y,z )/φ(x,y,z)



Normalized least squares

Bilevel optimization

Compute optimal q = q*(x,y,z) for each (x,y,z) in 

grid

Obtain envelope grid function

ci*= q*(x,y,z) χi(x,y,z)

Minimize the minimum value grid function

V(x,y,z) = Σi (di – ci*)
2/(ci*)

2



Normalized least squares with

regularization
Add penalization term λ q*(x,y,z), penalizing

large release rates:

Minimize grid function

V(x,y,z) = Σi (di – ci*)
2/(ci*)

2 +λ q*(x,y,z) 

We have used λ=1 in this study.



The Bayesian view on LS

Minimization problem: min D2

Equivalently,  max exp(-D2), may be

interpreted as a maximum likelihood estimation

(MLE) problem

By Bayes formula, exp(-D2) may be interpreted

as a posterior density (with noninformative

prior)

Regularization may be introduced as a (non-

constant) prior density. 



Adjoint plumes
RANS advection-diffusion models

Adjoint obtained from forward model by 

reversing advection and preserving diffusion 

(self-adjoint)

RANS-solvers used:

Phoenics

Code Saturne v4



Adjoint plumes – Code Saturne



Results
Source estimates (x,y,z,q) obtained by maximizing

The posterior densities (with or without regularization)

The distributed renormalization source

Isosurface plots of objective functions

Selected windtunnel data:

5 configurations of the complex array.

6 configurations of the simple array

2-4 datasets/configuration, total number 24

PHOENICS adjoints; Code Saturne adjoints pending



3D and 2D results

3D: Possibly elevated source

Source parameters (x,y,z,q)

Posteriors and renormalization source computed

on 3D grid (x,y,z)

2D: Assuming ground source

Source parameters (x,y,q)

Posteriors and renormalization source computed

on 2D grid (x,y), z=0

Level sets presented as highest posterior

density (HPD) domains



Highest posterior density (HPD) 

domains
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Isosurfaces, 3D posterior w/ reg.



Isosurfaces, 3D renorm. source



Isosurfaces, 3D posterior w/o 

reg.



Isocurves, 2D posterior w/ reg.



Isocurves, 2D renorm. source



Isocurves, 2D posterior w/o reg.



3D comparision, (x,y) errors



3D comparison, (x,z) errors



3D comparison, (x,q) errors



2D comparison, (x,y) errors



2D comparison, (x,q) errors



Mean absolute errors, 24 data 

sets

3D LS with reg. Renormalization LS

x 1.29 1.47 1.35

y 0.085 0.63 0.62

z 0.083 0.39 0.62

log10(q) 0.87 2.15 4.97

2D LS with reg. Renormalization LS

x 1.35 1.60 1.61

y 0.10 0.32 0.45

log10(q) 0.97 4.17 4.86



Some conclusions and remarks

All methods suffers from outliers

Regularization suppresses outliers in y,z,q

but not so much in x

Lack of regularization gives complicated

objective functions and hard optimization

problems, reflecting the ill-posedness of the 

inverse problem

Implementation has been verified on synthetic

data (not presented here)



Thank you!


