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(*) an almost perfect crime model

Direct modeling : the 
“murderer” point of view  

Inverse modeling: the 
“investigator” point of view  

• A lot of solutions  
• What are the clues ? 
• More clues, more efficient !
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Introduction

• Goal: estimate the parameters (location and release rate) of a hazardous 
release, in order to:

– Give the best term source (where and how much ) 

– Enhance the simulation of the resulting plume by giving better input data to the 
dispersion model  provide the best impact assessment map of the current 
situation

• Two main approaches are possible and have been investigated in the 
literature: 

– Optimization-based methods (minimum of a cost function)

• Variational data assimilation

• Genetic algorithms

– Bayesian inference and stochastic sampling (find the highest probability)
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The Bayesian framework

• Why a probabilistic approach :
– Taking into account the various uncertainties in the observations and in the dispersion model 

– Dealing with the presence (or also absence) of prior information on the source term  parameters

– Estimating the uncertainty related to the estimation results

• Generative model for the observation data: 
𝑑 = 𝑞 𝐶 𝜃 + 𝜀

• 𝑞 (t) temporal release profile 

• 𝐶 𝜃 is a source-receptor matrix obtained by running a dispersion model for a unitary release from a 
source located at position 𝜃

• 𝜀 is an aggregation of all error sources (model, observation, representativeness)  into a single vector

• In the Bayesian context, the objective is to estimate the posterior distribution 
𝑝 𝜃, 𝑞 𝑑) of the source parameters  (location 𝜃 and temporal release profile 𝑞) given 
the concentration measurements 𝑑 provided by a sensor network: 

𝑝 𝜃, 𝑞 𝑑) =
𝑝 𝑑 𝜃, 𝑞) 𝑝(𝜃, 𝑞)

𝑝(𝑑) 5



• The posterior distribution of the source parameters can be expressed using its marginal components: 

𝒑 𝜽, 𝒒 𝒅 = 𝒑 𝒒 𝜽, 𝒅 𝒑(𝜽|𝒅)

• Estimating the marginal posterior 𝑝 𝑞 𝜃, 𝑑) of 𝑞 can be done analytically :

– prior distribution 𝑝(𝑞) is Gaussian

– the observation error is also Gaussian centered on measurements 

• Estimating the posterior distribution 𝑝(𝜃|𝑑) of 𝜃 :

– Calls for the application of Bayes rule : 

𝒑 𝜽 𝒅 =
𝒑 𝒅 𝜽 𝒑(𝜽)

𝒑(𝒅)
∝ 𝒑 𝒅 𝜽 𝒑(𝜽)

– Requires the use of simulation-based methods (Monte Carlo) because it has no closed form due a highly non-
linear likelihood 𝑝(𝑑|𝜃) that relies on an atmospheric dispersion model run. 

– Can be done using a sequential-based approach (Markov Chain Monte Carlo -MCMC- ) or a population-
sampling approach (Importance Sampling).

The Bayesian framework
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• The Adaptive Multiple Importance Sampling (AMIS) algorithm is based 
on an consequent sampling scheme, where a target distribution (namely 
the posterior distribution) is approximated by weighted samples from a 
proposition distribution

• The “Adaptive” algorithm improves the standard importance sampling 
procedure by:

– Allowing the update of the proposal distribution, which can be chosen as a flexible 
combination of well-known kernels (e.g. a multivariate Gaussian mixture)

– Optimally recycling the importance weights at each iteration to fully exploit the 
full available information and accelerate the convergence 

The AMIS algorithm
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• One release (time dependent / accidental release)

• The source and measurements are at ground level 

• No plume rise

• The time of release starting and ending are unknown

• Meteorological data are time dependent

First Application restriction
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Sample 𝑁𝑝 elements 

𝜃𝑘
(1)
, 𝜃𝑘

(2)
, … , 𝜃𝑘

(𝑁𝑝)from 

the current proposal 
distribution

Compute the likelihood 

𝑝(𝑑|𝜃𝑘
(𝑖)
) and 

𝑝(𝑞|𝜃𝑘
(𝑖)
, 𝑑) by calling a 

dispersion model

Compute the recycled 
importance weights 

over all previous 
iterations 𝑤0:𝑘−1

Compute the current 

importance weight 𝑤𝑘
(𝑖)

Update the proposal 
parameters

Loop over all the sampled elements

Iterative scheme of the AMIS algorithm applied to the STE problem:

The AMIS algorithm
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Need of a very quick dispersion 
model  that does not allow to 
take benefit of all the 3D 
available info



• Preliminary tests applied on an experimental case (FFT07 experiment) showed a good 
estimation of the source location, but the release rate reconstruction is not as accurate as 
expected [Rajaona et al, 2015]

Estimation of the source parameters for the trial 7 of FFT07: position in x (left) and y (center) compared to the true location (red), and reconstructed 
release rate (right) with 95% confidence interval compared to the true emission profile (red). The dispersion model used to compute the likelihood is 
a simple Gaussian puff model.

[Rajaona et al., 2015] : Rajaona, H., Septier, F., Armand, P., Delignon, Y., Olry, C., Albergel, A., & Moussafir, J. (2015). An adaptive Bayesian inference algorithm to 
estimate the parameters of a hazardous atmospheric release. Atmospheric Environment,122, 748-762.

The AMIS algorithm
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• One of the downsides of the stochastic Bayesian approach is the high 
number of calls to a CPU-time consuming forward model when it comes 
to iteratively compute the likelihood for each sampled element.

• The model cannot scale efficiently if a more complex dispersion model is 
needed (e.g. in an urban scenario).

• The AMIS scheme needs to be optimized in order to deal with a more 
elaborate dispersion model.

The AMIS algorithm
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Optimizing 
using a retro-dispersion model
• Solution: use the duality relationship as mentioned in [Keats et al., 2007] to switch to a retro-

dispersion model

• The conjugate concentrations 𝐶∗ is obtained from the retro-model to build the source-receptor 
matrices.

• By pre-computing the 𝐶∗ matrix before the AMIS estimation process and store the results on disk, we 
remove the multiple calls to the forward dispersion model in the loop.

[Keats et al., 2007]: Keats, A., Yee, E., & Lien, F. S. (2007). Bayesian inference for source determination with applications to a complex urban 
environment. Atmospheric environment, 41(3), 465-479. 12



Sample 𝑁𝑝
elements 

𝜃𝑘
(1)
, 𝜃𝑘

(2)
, … , 𝜃𝑘

(𝑁𝑝)

from the current 
proposal 

distribution

Directly compute the 

likelihood 𝑝(𝑑|𝜃𝑘
(𝑖)
) and 

𝑝(𝑞|𝜃𝑘
(𝑖)
, 𝑑) Compute the recycled 

importance weights 
over all previous 
iterations 𝑤0:𝑘−1

Compute the current 

importance weight 𝑤𝑘
(𝑖)

Update the proposal 
parameters

Build the corresponding 
source-receptor matrices 

by fetching the relevant 𝐶∗

values from external files

Loop over all the sampled elements

Binary files on 
disk

Optimizing 
using a retro-dispersion model
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• We use Parallel Micro-SWIFT-SPRAY (PMSS) as dispersion model:
– SWIFT is a diagnostic model using a mass-conservation principle to build 3D interpolated wind fields

– SPRAY is a Lagrangian particle dispersion model that is used to generate synthetic concentration 
observations

– Retro-SPRAY is the dual of the SPRAY model, and is used to build the 𝐶∗ retro-dispersion fields

• Validation tests were performed using simulated observation data over realistic terrain 
characteristics in two cases:
– 1st use case (“BEAUNE”): in a countryside landscape with a constant wind

– 2nd use case (“OPERA”): in an urban context (neighborhood in downtown Paris) with a heterogeneous 
wind field

Optimizing 
using a retro-dispersion model
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First use-case “Beaune”
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First use-case “Beaune”

SW point coordinates (km) (642.000; 647.980)

NE point coordinates (km) (5204.000; 5209.980)

Nb. Of meshes (X,Y) (300,300) = 90 000 

Mesh resolution (m) 20

Wind speed 1.5 m/s

Wind direction 330°

Release duration 45 mn (from 10:15 to 11:00 am)

Release rate 1850 units/s 

Nb. sensors 25

Observation time frame From 10:05 am to 12:00pm

1st use-case (BEAUNE) input data:
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• 1st use case (BEAUNE) results:

• Good estimation of the release rate

• The estimated source location is not as good. Cause: differences between 𝐶 and 𝐶∗

source-receptor matrices ?

Estimation of the source parameters for the BEAUNE simulation: position in x (left) and y (center) compared to the true location (red), and 
reconstructed release rate (right) with 95% confidence interval compared to the true emission profile (red). 

First use-case “Beaune”
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Second use-case “OPERA”
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SW point coordinates (km) (450.457;451.263)

NE point coordinates (km) (5412.961;5413.842)

Nb. Of meshes (X,Y) (404,441)=  178 164

Mesh resolution (m) (2,2)

Wind speed 3m/s

Wind direction 11:00am-12:00 pm: 230° | 
12:00pm-1:00pm: 180° | 
1:00pm-2:00pm: 45°

Release duration 10 mn (from 12:10 to 12:20 pm)

Release rate 104  units/s 

Nb. sensors 10

Observation time frame From 11:35 am to 1:00pm

2nd use-case (OPERA) input data :

Second use-case “OPERA”
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• 2nd use case (OPERA):

• Estimation of the source location  OK
• Difficulties to reconstruct the release rate due to the complexity of the use 

case (wind rotation, obstacles)

Estimation of the source parameters for the OPERA use-case: position in x (left) and y (center) compared to the true location (red), and reconstructed release 
rate (right) with 95% confidence interval compared to the true emission profile (red). 

Second use-case “OPERA”
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Conclusion
• New  design of  an optimized estimation process relying on Bayesian inference, 

stochastic modeling and a 3D Lagrangian dispersion model.

• AMIS methods improve MCMC methods efficiently

• The proposed scheme is able to hold the computational load and thus be scalable by 
using pre-computed retro-dispersion data obtained by the retro-dispersion model.

• The validation tests using this process show that the AMIS algorithm, could be used 
with any dispersion model and first results in complex situation are encouraging 

• Perspectives and improvements:
– Improve the method  and test the estimation process on experimental data in an urban scenario

– Study the influence of the various parameters in the AMIS algorithm

– Extension of the method :  elevated sources (including  plume rises) and multi-sources

21



Thank you for your attention.
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Positive Constraint Procedure


