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The transport-chemistry system

 Coupled nonlinear system

 Direct discretization by M grid points → large 

nonlinear system of ODE’s with M·q

unknowns

→ Off-the-shelf solvers are not applicable
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Operator splitting

Note: the rhs of (1) is a sum of simpler terms

Idea: decompose (split) system (1) into a sequence 
of simpler problems.

 Divide the time interval into sub-intervals of 
length τ

 Solve each sub-problem successively at each 
time step τ

 Always use the solution of the previous sub-
problem as initial condition



Advantages

 Problem (1) is decomposed into several simpler 
problems.

 Apart from term Ri, independent linear scalar 
equations are obtained for each species (M
unknowns instead of Mq unknowns).

 Each sub-problem can be solved in a 
mathematically correct way.



Disadvantages

 Local splitting error

Splitting techniques with smaller splitting error:

- Marchuk-Strang splitting

- SWS splitting

But these are more costly!

 Difficulties with the boundary conditions



Problems of the accuracy

p: order of the splitting method

r: order of the applied numerical method

→ The whole approximation will have order

min{p,r}

It is not worth using a higher order numerical 
method for the sub-problems, unless the splitting 
method is of higher order, too.  But they are 
expensive.

Question: How to enhance the accuracy in a cost-
effective way?
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Richardson extrapolation (RE)

Task:

Idea: apply the same p-th order numerical method by two different step 

sizes, and combine the solutions by some weights

Denote the numerical solution at time tn-1 by yn-1 .

1. Perform one time step τ to calculate the approximation zn of y(tn)

2. Perform two time steps τ /2 to calculate the approximation wn of 

y(tn)

3. Combine them as

4. Then 
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Passive RE



Active RE



Stability issues

 The passive RE preserves the stability 

properties of the underlying method

 This is not necessarily true for the active RE:

- Trapezoidal rule + RE: not A-stable

- BE + RE: L-stable

- General θ-method + RE: A-stable for 

- For two implicit RK methods very large stability 

regions were found.
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Computational efficiency

Let T = Nτ. Then by time step τ /2, 2N steps are needed.

 Both RE’s require ~1.5 times more computations than 

performing 2N steps with the underlying method.

 If we have the solution with time step τ (N steps), then 

the passive RE hardly requires more time than 

performing 2N steps with the underlying method

 When parallelized, the active RE does not require 

much more time than performing 2N steps with the 

underlying method



Numerical experiments

We applied RE in the chemical module of UNI-

DEM

 Chemical scheme of EMEP with 56 species

 Nonlinear system of ODEs

 Strongly stiff

 24-hour time interval

 Reference solution: 4-step, fifth-order L-stable 

implicit RK solver

 Errors measured in the maximum norm



Errors obtained by  the backward Euler 
method + RE 

N BE BE+ active RE BE+ passive RE

1344 3.063E-1 7.708E-3 6.727E-3

2688 1.516E-1 (2.02) 1.960E-3 (3.93) 1.739E-3 (3.87)

5376 7.536E-2 (2.01) 5.453E-4 (3.59) 4.417E-4 (3.94)

10752 3.757E-2 (2.01) 1.455E-4 (3.75) 1.113E-4 (3.97)

21504 1.876E-2 (2.00) 3.765E-5 (3.86) 2.793E-5 (3.98)

43008 9.371E-3 (2.00) 9.583E-6 (3.93) 6.997E-6 (3.99)

86016 4.684E-3 (2.00) 2.418E-6 (3.96) 1.751E-6 (4.00)

172032 2.341E-3 (2.00) 6.072E-7 (3.98) 4.379E-7 (4.00)

344064 1.171E-3 (2.00) 1.522E-7 (3.99) 1.095E-7 (4.00)



CPU times (seq) and numbers of time steps 
(BE method) needed for prescribed 
accuracy

Global error BE 

CPU time |No.of steps

BE + RE

CPU time|No.of steps

[1E-1, 1E-2] 274 5376 304 672

[1E-2, 1E-3] 862 43008 374 1344

[1E-3, 1E-4] 7144 688128 661 5376

[1E-4, 1E-5] 42384 5505024 1428 21504

[1E-5, 1E-6] 265421 44040192 2240 43008



Errors obtained by the sequential 
splitting (+BE) without and with RE

N Seq. splitting Seq. spl. + RE

1344 2.154e-1 1.799e-2

2688 1.093e-1 (1.97) 5.862e-3 (3.07)

5376 5.509e-2 (1.99) 1.698e-3 (3.45)

10752 2.764e-2 (1.99) 4.598e-4 (3.69)

21504 1.384e-3 (2.00) 1.199e-4 (3.84)

43008 6.926e-3 (2.00) 3.062e-5 (3.92)

86016 3.464e-3 (2.00) 7.740e-6 (3.96)

172032 1.733e-3 (2.00) 1.946e-6 (3.98)



Further plans

 Extending our theoretical results to further 

underlying methods (general RK method)

 Stability analysis of the RE when combined 

with different splittings

 Investigating the possibilities of the RE for 

solving PDEs


