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Motivation: Hazard Assessment

 Given a certain 

inhalation 

exposure to toxic 

chemicals, how do 

we assess the 

hazard this poses 

to a human 

population?
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 Need models that link exposure to human response…

Government organizations 

tasked with assessing current 

and potential hazards to 

civilian populations due to a 

wide variety of chem-bio-

radiological effects



Haber’s Law and Toxic Load Model
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One of the simplest phenomenological models relating concentrations of 

toxic chemicals to casualties is Haber’s law
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Haber’s law models casualties for certain chemicals under certain 

conditions

However, for some toxic agents, the population response depends upon 

the time history of the exposure 
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Haber’s law:

Dosage = C × T (~total amount of agent delivered)

Dosage uniquely determines casualties (ie. LD50)

𝐶1𝑇1 = 𝐶2𝑇2

Time history does not matter:

Exposure 1 and Exposure 2 will cause the 

same amount of casualties

Toxic Load Model:

Toxic Load = Cn × T (depends on time history)

Toxic Load uniquely determines casualties (ie. TL50)

n>1: Exposure 1 will be more lethal than Exposure 2

US EPA’s AEGL 

methodology utilizes 

toxic load model



TL Model and Population Statistics

 Physiological differences in a population leads to variability 

in lethal exposure, as observed in an experiment

 Toxic load model uses three parameters (n, TL50, m) to 

capture the statistics of population
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The toxic load model was originally defined and validated for time-constant 

exposures (single square pulses).

Real-world exposures are not time-constant.

Various extensions to the toxic load model are proposed to capture time 

dependence. None have been validated!

Toxic Load Model and its Extensions
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• Integrated Concentration (or ten Berge):

• Average Concentration:

• Griffiths and Megson: 

• Peak Concentration: 

• Conc. Intensity:

Common in dispersion modeling systems

Avg. conc. over exposure period

Max.conc. over exposure period

Related to SCIPUFF tox. model; 

accounts for conc. fluctuations

Accounts for intermittent exposures

Extensions to Toxic Load Models

US DTRA sponsored a set of experiments specifically 

designed to identify possible toxic load model extension

Extensions to the model 

provide significantly different 

casualty predictions for time-

dependent exposures

𝑇𝐿 =
 𝐶 𝑡 𝑑𝑡
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If concentration is constant (ie. C(t) = C), all extensions reduce to: 𝑇𝐿 = 𝐶𝑛Δt



Exposure profiles in the 2012 DTRA experiment

Constant
(one square pulse)

Stair-step
(two unequal square pulses)

Profile #4 (6 runs)

Profile #5 (5 runs)

Profile #2 (6 runs)

Profile #3 (5 runs)

Profile #1 (7 runs)

Intermittent
(two unequal square pulses)

Profile #11 (7 runs)

Profile #9 (5 runs)

Profile #10 (7 runs)

Profile #6 (6 runs)

Profile #7 (5 runs)

Profile #8 (8 runs)
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Exposures for different runs within a profile (Example)

Profile #4
(2:1 pulse ratio is maintained, 
but overall intensity is varied)

Run #1 Run #2 Run #3

Run #4 Run #5 Run #6

(Each “run” consists of a batch of 10 rats)

Low exposure

High exposure
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Exposure profiles in the 2013 DTRA experiment

Constant
(one square pulse)

Stair-step
(two unequal square pulses)

Profile #4 (8 runs)

Profile #5 (4 runs)

Profile #2 (4 runs)

Profile #3 (4 runs)

Profile #1 (5 runs)

Intermittent
(two unequal square pulses)

Profile #9 (5 runs)

Profile #10 (9 runs)

Profile #6 (2 runs)

Profile #7 (6 runs)

Profile #8 (4 runs)

Profile #11 (7 runs)
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• Identify the subset of time-constant concentration data 

that is consistent with TL model
- Determine baseline parameters

• For non-steady concentration data, compare predictions 

of different extensions of toxic load model to 

observations
- Using baseline parameters

• Assess robustness of conclusions 

Outline of our Analysis
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Discrete 

values on the 

y-axis

Sampling 

error plays a 

significant 

role

Fit consistent 

with expected 

sampling 

error

Fit of Toxic Load Model to Const. Conc. Data

(10, 15, 30 minutes as baseline for fit)

n = 1.36

TL50 = 5.62 x 10^4

m = 6.15

See Jeffry 

Urban’s  

poster tonight 

for details 

(H17-112) 

One dot = 10 

rats… one trial
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Do toxic load model extensions work 

for time-dependent exposures?
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Over estimation 

of casualties

Under estimation 

of casualties

Predicted

Fraction 

Dead

Accuracy of Casualty Model

Modeled vs Observed

Observed Fraction Dead



Ten Berge: Accuracy of Casualty Predictions

10 minute stair-step exposures
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Conc

Time 10

Profile 2

Conc

Time 10

Profile 3

Over prediction bias
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Conc

Time 10

Profile 2

Conc

Time 10

Profile 3

Over prediction bias

Conc Int: Accuracy of Casualty Predictions

10 minute stair-step exposures
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Conc

Time 10

Profile 2

Conc

Time 10

Profile 3

Strong over prediction bias

Peak Conc: Accuracy of Casualty Predictions

10 minute stair-step exposures
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Conc

Time 10

Profile 2

Conc

Time 10

Profile 3

Well fit

Ave Conc: Accuracy of Casualty Predictions

10 minute stair-step exposures
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Conc

Time 10

Profile 2

Conc

Time 10

Profile 3

Well fit

Griffiths: Accuracy of Casualty Predictions

10 minute stair-step exposures
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Visual depiction of bias and scatter
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Conc

Time 10

Profile 2

Conc

Time 10

Profile 3

Blue dots:

slight bias

Green dots:

Moderate 

scatter, no bias
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Quantifying Bias and Scatter

 Need a way to compare disagreement we 

observe to what we would expect by chance

 This indicates how well the TL model is 

predicting casualties

 Use p-values as an indicator of goodness of fit 

and define a “pass” or “fail”
 If the bias/scatter of the data has a p-value less than 0.9, 

term the fit acceptable
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Profile 

Desription

Griffiths-

Megson

p-values

Ave.

Conc.

p-values

Ten-

Berge

p-values

Conc.

Int.

p-values

Peak

Conc.

p-values

1:5, long-short, 

10 mins total

No time gap

0.3728 0.3728 0.9723 0.9948 0.9998

1:5, equal dur., 

10 mins total

No time gap

0.3990 0.3990 0.8206 0.8990 0.9793

2:1, equal dur., 

30 mins total

No time gap

0.9746 0.9746 0.9918 0.9952 0.9997

5:1, equal dur.,

30 mins total

No time gap

0.9934 0.9934 0.9938 0.9968 0.9996

1:5, long-short, 

30 mins total

No time gap

0.9800 0.9800 0.9993 0.9996 1.0000

1:5, equal dur., 

30 mins total

No time gap

0.4159 0.4159 0.4871 0.5881 0.8043

1:5, long-short, 

10 mins total

Time gap

1.0000 0.9998 1.0000 1.0000 1.0000

1:5, equal dur., 

10 mins total

Time gap

0.8495 0.1781 0.9964 0.9989 0.9998

2:1, equal dur., 

30 mins total

Time gap

0.5639 0.8070 0.6333 0.6776 0.8840

5:1, equal dur.,

30 mins total

Time gap

0.9302 0.9260 0.9997 1.0000 1.0000

1:5, long-short, 

30 mins total

Time gap

0.8851 0.9845 0.9647 0.9804 0.9958

1:5 equal dur., 

30 mins total

Time gap

0.9656 0.9989 0.8944 0.8904 0.9203

TL Models’ Performance for Scatter

P-values of mean square error statistic

Conc

Time 10
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Profile 

Desription

Griffiths-

Megson

p-values

Ave.

Conc.

p-values

Ten-

Berge

p-values

Conc.

Int.

p-values

Peak

Conc.

p-values

1:5, long-short, 

10 mins total

No time gap

0.6882 0.6882 0.9964 0.9997 1.0000

1:5, equal dur., 

10 mins total

No time gap

0.4002 0.4002 0.9135 0.9681 0.9964

2:1, equal dur., 

30 mins total

No time gap

0.9864 0.9864 0.9979 0.9990 1.0000

5:1, equal dur.,

30 mins total

No time gap

0.9211 0.9211 0.3071 0.5740 0.9791

1:5, long-short, 

30 mins total

No time gap

0.5429 0.5429 0.9924 0.9986 0.9999

1:5, equal dur., 

30 mins total

No time gap

0.4322 0.4322 0.6243 0.7895 0.9328

1:5, long-short, 

10 mins total

Time gap

0.9314 0.2194 1.0000 1.0000 1.0000

1:5, equal dur., 

10 mins total

Time gap

0.9639 0.2483 0.9996 0.9999 1.0000

2:1, equal dur., 

30 mins total

Time gap

0.4431 0.9009 0.6398 0.7195 0.9513

5:1, equal dur.,

30 mins total

Time gap

0.8280 0.5758 0.9999 1.0000 1.0000

1:5, long-short, 

30 mins total

Time gap

0.0179 0.9852 0.9161 0.9460 0.9972

1:5 equal dur., 

30 mins total

Time gap

0.9363 1.0000 0.0301 0.2928 0.7334

TL Models’ Performance for Bias

P-values of absolute mean difference statistic
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Metric Griffiths-

Megson

Average 

Conc.

Ten-Berge Conc. 

Intensity

Peak 

Conc.

# profiles with 

acceptable 

scatter

6 of 12 5 of 12 4 of 12 4 of 12 2 of 12

# profiles with 

acceptable 

bias

7 of 12 7 of 12 4 of 12 4 of 12 1 of 12

# profiles with 

acceptable 

bias and 

scatter

5 of 12 4 of 12 3 of 12 3 of 12 0 of 12

Poor performance

TL Models’ Overall Performance in Predicting 

Casualties

 The experiments indicate that the time-dependent toxic 

load models are not accurate for HCN exposures in rats

Very poor performance



Recap and Conclusions

 For constant concentration profiles:

 A single toxic load model cannot accurately predict 

casualties across the full time scale from 2.3 to 30 

minutes.

 However, we found that a single toxic load model can 

accurately predict casualties across a time-scale of 10 to 

30 minutes.

 On this time scale, the best fit parameters were… 
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𝑛 = 1.36, 𝑇𝐿50 = 5.62 ∗ 104, 𝑚 = 6.15



Recap and Conclusions
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 For time varying concentration profiles:

 No model fits the data particularly well.

 The Average Concentration model and the Griffiths-Megson

model provide the least inaccurate predictions

 Both models provide inaccurate predictions for seven of twelve profiles in 

the 10-30 minute exposure range where the toxic load model is applicable.

 Our conclusions about model accuracy hold only if the 

dominant source of error is small sample size (10 rats 

per trial). 

 Potential systematic errors are not considered in this analysis

 Some physiological effects cannot be captured by any toxic load 

model. New toxicity models may be needed.


