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Air quality modelling is widely used by local and national authorities to evaluate population exposure, to locate concentration thresholds exceedances, to investigate the relationships between air 
pollution and health effects or to quantify the impact of urban and traffic planning. Compared to the ground point measurements, numerical models are less accurate but their spatial resolution is better, 
in particular when using urban air quality models, which can describe the pollution with a resolution of a few meters. 
 
In order to reduce errors in modeling, data assimilation techniques can be applied, which consists in a combination of modelling and measurements. They are widely used with models at the regional scale 
(e.g. Wang et al., 2011) but according to our knowledge, only Tilloy and al. (2013), and Denby (2007) have applied these methods with an atmospheric dispersion model at urban scale. The aim of this 
study is to evaluate the performance of the data assimilation, using the Best Linear Unbiased Estimator method (BLUE), using the SIRANE urban atmospheric dispersion model (Soulhac et al., 2012, 2011). 

EVALUATION OF DATA ASSIMILATION METHODS AT URBAN SCALE WITH 
THE SIRANE MODEL 

INTRODUCTION 

BEST LINEAR UNBIASED ESTIMATOR (BLUE) 
In the BLUE theory, the best estimation, called analysis state vector, is estimated with the 
equation 1, where y is the observation state vector, xb is the background state vector (prior 
estimate), xa is the analysis state vector, H is the observation operator which maps from the 
background to the observation space, and K is the Kalman gain matrix. The Kalman gain matrix 
which minimize the analysis variance error is given by the equation 2, where B and R are 
respectively the background and the observation error covariance matrix. 
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CONCLUSION 
In this work, we have evaluated the performances of the 
BLUE method with three background error covariance 
models to estimate the NO2 hourly concentrations in the 
Lyon city in 2008. 
 
The results indicates that the BLUE method improve the 
global estimation of the SIRANE urban atmospheric 
dispersion model for the bias, the RE, the RMSE, and the 
Corr statistical indices. However, locally the results are 
sometimes much worse for the bias and the RE indices.  

Table 1: Statistical indices used to evaluate the method performances 

MODELISATION OF THE BACKGROUND ERROR COVARIANCE MATRIX 
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Generally, B is modelled with a spatial approach which suppose that closer two points are, more 
correlated the background errors are. The first model (M1) used is the one proposed by Tilloy et al. 
(2013) which is function of the variable dij which is the shorter distance between the points si and 
sj along the road network and of the variable Pi which is the distance from the point si to the closer 
road (equation 3). The parameters ν0, Ld, Lp, and α are respectively a characteristic variance, a 
characteristic distance along the road, a characteristic projection distance and a scaling coefficient. 

The parameters ρ0, Lρ, and β are respectively a characteristic correlation, a characteristic 
correlation distance and a scaling coefficient (equation 4). This model assume that more correlated 
the concentrations are, more correlated the errors are. In this case the diagonal of the matrix is 
modelled with the equation 5. 
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The third model (M3) implemented in this study is a combination of the two first model (equation 
6). Also in this case, the diagonal of the matrix is modelled with the equation 5. 
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MODELISATION OF THE OBSERVATION ERROR COVARIANCE MATRIX 

European Directive relative to air quality stipulate that the maximal incertitude for the 
measurements must be of 15 %. Moreover, Tilloy et al. (2013) indicates that the observation 
errors are dependent of the measured concentrations. We assume in this study that the 
probability distribution of the observation error is a Gaussian and that 95% of the errors are 
inferior to 15% of the mean measured concentrations. So, the diagonal R matrix is estimated with 
the equation 7. 
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Bias 
RE 

(Relative Error) 
RMSE 

(Root Mean Square Error) 
Corr 

(Correlation coefficient) 
Method Bias [µg.m-3] ER RMSE [µg.m-3] Corr 

SIRANE 3.51 0.48 22.31 0.73 

BLUE (M1) 1.41 (59%) 0.38 (20%) 17.68 (20%) 0.83 (13%) 

BLUE (M2) 0.73 (79%) 0.39 (18%) 18.11 (18%) 0.82 (12%) 

BLUE (M3) 1.04 (70%) 0.36 (25%) 17.22 (22%) 0.84 (15%) 

The second model (M2) used is inspired by Blond et al. (2003). This model takes into account the 
variable ρij which is the correlation between the background concentrations of the points si and sj 
and the variable vari which is the variance of the background concentrations of the point si. 

The BLUE method has been implemented to estimate NO2 hourly concentrations on Lyon city 
(France) in 2008, where 16 measurements stations are available. In this study, the background state 
vector is provided by the SIRANE urban atmospheric dispersion model. To evaluate the 
performances of the assimilation, we realize a leave-one-out cross-validation and we calculate the 
statistical indices (SI) defined in the table 1, where the C and σ represent respectively the 
concentration and the concentration standard deviation (the subscripts m and p refer respectively 
to measured data and to predicted data). 

The global performances (table 2) indicate that the BLUE method improves the SIRANE estimations 
for all statistical indices. The three background error covariance model lead to an improvement of 
about 20% for the RE and the RMSE indices, and an improvement superior to 50% and 10% for the 
bias and the Corr indices. We can note that the performances are slightly better for the model M3. 
The figure 1 shows the NO2 annual mean concentration estimated with SIRANE and the BLUE 
method. Locally, the BLUE method also improve the RMSE and the Corr indices (figure 2). However, 
the bias and the RE are sometimes much worse after assimilation. 

Table 2: SIRANE and BLUE global performances (improvement quantification are in brackets) 

a) SIRANE b) BLUE (M1) 

c) BLUE (M2) d) BLUE (M3) 

Figure 2: SIRANE and BLUE (M3) local performances (red: traffic station; green: urban station; black: 
industrial station; blue: background station; red value: worse performance after assimilation) 

Figure 1: NO2 annual mean concentration on Lyon city in 2008 estimated with the 
SIRANE model (a) and the BLUE method (b, c, and d) 
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VAI 
SI SIRANE BLUE 

Bias 18.99 14.91 
ER 0.38 0.31 

RMSE 29.83 23.98 
Corr 0.66 0.78 

GAR 
SI SIRANE BLUE 

Bias 16.41 10.03 
ER 0.35 0.26 

RMSE 33.45 25.93 
Corr 0.69 0.81 

LC 
SI SIRANE BLUE 

Bias -4.79 -8.98 
ER 0.58 0.39 

RMSE 19.78 13.34 
Corr 0.65 0.92 

VAU 
SI SIRANE BLUE 

Bias -0.95 -0.12 
ER 0.72 0.38 

RMSE 13.64 8.60 
Corr 0.75 0.91 

GEN 
SI SIRANE BLUE 

Bias 1.79 2.20 
ER 0.51 0.35 

RMSE 15.48 12.14 
Corr 0.71 0.83 

GC 
SI SIRANE BLUE 

Bias 6.65 3.29 
ER 0.48 0.37 

RMSE 24.99 18.96 
Corr 0.64 0.80 

LP 
SI SIRANE BLUE 

Bias 0.22 -1.46 
ER 0.48 0.31 

RMSE 24.99 17.07 
Corr 0.64 0.84 

STF 
SI SIRANE BLUE 

Bias 2.54 -0.07 
ER 0.49 0.42 

RMSE 18.73 12.47 
Corr 0.70 0.89 

GER 
SI SIRANE BLUE 

Bias 2.31 0.92 
ER 0.45 0.23 

RMSE 18.55 9.62 
Corr 0.66 0.92 

MUL 
SI SIRANE BLUE 

Bias 10.45 -0.70 
ER 0.44 0.46 

RMSE 39.70 35.59 
Corr 0.60 0.65 

BER 
SI SIRANE BLUE 

Bias -0.84 -6.51 
ER 0.39 0.31 

RMSE 22.14 17.28 
Corr 0.63 0.83 

STJ 
SI SIRANE BLUE 

Bias -2.72 -1.07 
ER 0.55 0.33 

RMSE 19.46 12.59 
Corr 0.66 0.86 


