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INTRODUCTION 
In engineering industry and atmospheric transport and dispersion modelling there is an in-
creasing use of computational methods to calculate complex turbulent flow fields. Many of 
these computations depend on the k -ε  turbulence model, while some are based on second-
moment closures. For some flows these models provide an adequate description of the turbu-
lent processes, but for many others a more complete and accurate representation is required. 
The development of probability density function (PDF) methods is an effort to meet this need. 
 
The mean velocity and Reynolds stresses are the first and second moments of the PDF of ve-
locity. In PDF methods, a transport equation is solved directly for the PDF of the turbulent 
velocity field, rather than for its moments as in Reynolds stress closures. Therefore, in princ i-
ple, a more complete statistical description can be obtained. While for some flows (e.g. ho-
mogeneous turbulence) this higher level description may provide little benefit over second 
moment closures, in general the fuller description is beneficial in allowing more processes to 
be treated exactly and in providing more information, which can be used in the construction of 
closure models. Convection, for example, can be exactly represented mathematically in the 
PDF framework, eliminating the need for a closure assumption (Pope, 2000). Similarly, defin-
ing the joint PDF of velocity and species concentrations in a chemically reactive turbulent 
flow allows for the treatment of chemical reactions without the burden of closure assumptions 
for the highly nonlinear chemical source terms (Fox, 2003). This latter advantage has been 
one of the most important incentives for the development of PDF methods, since previous at-
tempts to provide moment closures for the chemical source terms resulted in errors of several 
orders of magnitude (Pope, 1990). Applying this technique in atmospheric transport and dis-
persion modelling allows the source term of moisture content to be represented without turbu-
lence closure. 
 
In the case of turbulent flows around complex geometries the presence of walls requires spe-
cial treatment, since traditional turbulence models are developed for high Reynolds numbers 
and need to be modified in the vicinity of walls. Possible modifications involve damping 
functions (van Driest, 1956; Rodi & Mansour, 1993) or wall- functions (Launder & Spalding, 
1974; Rodi, 1980). In those turbulent flows where a higher level of statistical description is 
necessary close to walls, adequate representation of the near-wall anisotropy and inhomogene-
ity is crucial. Durbin (1993) proposed a Reynolds stress closure to address these issues. In his 
model, the process of pressure redistribution is modelled through an elliptic equation, by anal-
ogy with the Poisson equation, which governs the pressure in incompressible flows. This 
represents the non- local effect of the wall on the Reynolds stresses. In an effort to extend PDF 
methods to wall-bounded turbulent flows, Durbin's elliptic relaxation method has been com-
bined with the generalized Langevin model (Haworth & Pope, 1986) by Dreeben & Pope 
(1997; 1998). This approach is closely followed throughout the present study to model the 
joint PDF of the turbulent velocity field. 
 
As a first step towards the application of PDF modelling for atmospheric flows on complex 
geometries, a PDF hydrodynamic solver has been developed to model a fully developed, in-
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homogeneous, turbulent channel flow. A widely used model to incorporate the effects of 
small scale mixing on the scalar in the PDF framework is the interaction by exchange with the 
mean (IEM) model (Villermaux & Devillon, 1972). While this model has the virtue of being 
simple and efficient, it fails to comply with several physical constraints and desirable proper-
ties of an ideal mixing model (Fox, 2003). Although a variety of other mixing models have 
been proposed to satisfy these properties, (see Dopazo, 1994, for a review), the IEM model 
remains widely used in practice. Recently, increasing attention has been devoted to the inter-
action by exchange with the conditional mean (IECM) model. Sawford (2004) has done a 
comparative study of scalar mixing from line sources in homogeneous turbulence employing 
both the IEM and IECM models, wherein he demonstrated that the largest differences be-
tween the two models occur in the near- field. He also investigated the two models in a double 
scalar mixing layer (Sawford, 2006) with an emphasis on those conditional statistics that fre-
quently require closure assumptions. Based on the IECM model, a PDF micromixing model 
has been developed by Cassiani et al. (2005, 2005b) for dispersion of passive pollutants in the 
atmosphere. They compute scalar statistics in homogeneous turbulence and in neutral and 
convective boundary layer by assuming a joint PDF for the turbulent velocity field. However, 
no previous studies have been conducted on modelling the joint PDF of velocity and a passive 
scalar from a concentrated source in inhomogeneous flows. 
 
We have developed a complete PDF-IECM model for a fully developed, turbulent, long-
aspect-ratio channel flow, where a passive scalar is continuously released from concentrated 
sources. The joint PDF of velocity, characteristic turbulent frequency and concentration of a 
passive scalar is computed using stochastic equations. The flow is explicitly modelled down 
to the viscous sublayer by imposing only the no-slip and impermeability condition on parti-
cles without the use of damping, or wall- functions. The high level inhomogeneity and anisot-
ropy of the Reynolds stress tensor at the wall are captured by the elliptic relaxation method. A 
passive scalar is released from a concentrated source at the channel centreline and in the vis-
cous wall-region. The effect of small-scale mixing on the scalar is modelled by the IECM 
model. Velocity and scalar statistics are computed in physical and composition spaces. The 
results are compared to DNS and experimental data. 

 
GOVERNING EQUATIONS 
The governing equation for a viscous, incompressible flow is the Navier-Stokes equation 
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where ,iU ,p ρ  and ν  are the Eulerian velocity, pressure, constant density and kinematic vis-
cosity, respectively. Based on Equation (1), an exact transport equation can be derived for the 
Eulerian joint PDF of velocity (Pope, 1985; 2000). The PDF transport equation is seldom 
solved with traditional numerical methods due to its high dimensionality. More economical 
are Monte-Carlo methods, in which the flow is represented by a large number of Lagrangian 
particles governed by stochastic differential equations. Incorporating the generalized Lange-
vin model of Haworth & Pope (1986) as the turbulence closure, the position and velocity of 
each particle are governed by 
 

( ) )(,W+tU=X iii 2d2dd 2/1ν  
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where iWd is an isotropic Wiener-process, ijG is a second order tensor function of velocity 

statistics, 0C is a positive constant and ε  is the turbulent kinetic energy dissipation rate. 

ijG and 0C are determined by solving an elliptic equation to incorporate the effects of the wall 
on the particles. Details can be found in (Dreeben & Pope, 1998). A remarkable feature of 
this formulation is that the effects of convection and viscous diffusion have exact mathemati-
cal representations, therefore need no closure assumptions. Only pressure redistribution and 
dissipation, which are jointly modelled by the last two terms of Equation (3), require closure 
hypotheses. The dissipation rate is modelled by a stochastic equation for the characteristic 
turbulent particle frequencyω . To model the concentration of a transported scalar the interac-
tion by exchange with the conditional mean (IECM) model is employed: 
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where mt is the micromixing timescale, ψ  is the sample space variable of the scalar 

concentration ϕ , while U|ϕ  denotes the scalar mean conditioned on the velocity field. 
 
In summary, the flow is represented by a large number of Lagrangian particles representing a 
finite sample of all fluid particles in the domain. Each particle has a position X, and with its 
velocity U carries its turbulent frequency ω  and concentration ψ . These particles can be 
thought of as different realizations of the turbulent flow, therefore all one-point statistics as 
well as the full joint PDF of velocity, frequency and scalar concentration are readily available 
from suitable lo-cal averages. 

 
RESULTS 
The model has been run for the case of fully developed channel flow at 

22800/=Re =hU ν  based on the streamwise centerline mean velocity and the channel 
half-width h, with a passive scalar released from a concentrated source at the centreline and in 
the viscous wall region. The equations to model the velocity and turbulent frequency have 
been solved on a 100-cell one-dimensional grid with 500 particles per cell, while to compute 
scalar concentration statistics a two-dimensional unstructured grid has been used. In Figure 1 
the cross-stream profiles of mean streamwise velocity, the non-zero components of the Rey-
nolds stress tensor and the dissipation rate of turbulent kinetic energy are compared with the 
DNS data of Abe et al. (2004). The turbulence model combined with the elliptic relaxation 
technique reproduces well the high inhomogeneity and anisotropy in the low-Reynolds-
number wall-region. 
 
In fully developed turbulent channel flow the centre region of the channel can be considered 
approximately homogeneous (Brethouwer & Nieuwstadt, 2001). Thus for a scalar released at 
the centreline, Taylor's (1921) theory of absolute dispersion is expected to describe the mean 
field of the passive scalar well up to a certain downstream distance from the source. This is 
demonstrated in Figure 2, where cross-stream mean concentration profiles at different down-
stream locations are depicted. Also shown in Figure 2 is a PDF of scalar concentration fluc-
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tuations at a location downstream of the source. The model for the joint PDF of velocity, tur-
bulent frequency and scalar concentration accurately represents the full PDF and its statistics. 
 
 

Fig. 1; Cross-stream profiles of (a) the mean streamwise velocity, (b) the diagonal 
components of the Reynolds stress tensor, (c) the shear Reynolds stress and (d) the rate of 
dissipation of turbulent kinetic energy. Lines - PDF calculation, symbols - DNS data of Abe et 
al. (2004). All quantities are normalized by the friction velocity and the channel half-width. 
 

 
Fig. 2; (a) Cross-stream profiles of mean concentration at different downstream locations for 
the centreline release. Lines – PDF calculation, hollow symbols – analytical Gaussians ac-
cording to Taylor's (1921) theory, filled symbols – experimental data of Lavertu & Midlarsky 
(2005). (b) PDF of concentration fluctuations at a downstream location at the centreline. 
Lines – computation, symbols – experimental data. 
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