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INTRODUCTION 
Data assimilation (DA) in atmospheric dispersion models has recently become one of the 
most challenging problems. Data assimilation aims at improving a model’s predictions by 
merging measurements with model results in an optimal way. The basic types of the data 
assimilation approaches used in the ADMs are the same as of those used in the NWP models, 
i.e., the algorithms based on: Kalman Filtering (KF), or Ensemble Kalman Filtering (EnKF) 
approach (Segers, 2002) and the variational algorithms, which often lead to the adjoint 
equations (e.g., Le Dimet and Talagrand, 1986). In variational data assimilation one attempts 
to find optimal parameters (the so-called control variables, for instance initial conditions of 
the model), that minimize a discrepancy between model results and measurements for a 
chosen analysis period. 
 
The DA procedures for the ADMs were mainly implemented in the Eulerian models (e.g., 
Segers, 2002). From the literature it can be seen an obvious lack of data assimilation 
algorithms applied in puff and Lagrangian particle models, which are widely used in the 
emergency response systems. In Lagrangian (and “puff”) models (e.g. Bartzis et al., 2000) the 
pollutant is emitted in parcels which move with the local wind speed. The concentration is 
calculated by summing the contribution of all parcels. In Astrup et al. (2004) the Extended 
Kalman Filtering (EKF) approach was used. The possibilities to overcome some difficulties 
using the Ensemble Kalman Filtering approach were studied by Zheng et al., (2006). The 
paper of Fisher and Lary (1995) concerned the implementation of the variational DA 
approach in a Lagrangian particle model. In the works of Jeong et al., (2005), and Quelo et 
al, (2005), the variational methodologies used are capable to deal only with constant wind 
speeds and constant source rate. In the work of Drews et al., (2005), that implements the 
Extended Kalman Filtering approach, the case of variable source function and constant wind 
speed is considered. 
 
The present work is concerned with extending the variational methodology to the puff model, 
which in principal is capable of dealing with variable source function and wind speed. The 
developed methodologies are closely related to the work of Kathiragamatan et al., (2004). He 
developed a variational approach to a Eulerian model. However, his method is limited to 
constant wind speed. Other important differences with the present approach are in the cost 
functional formulation. In the present work we aim at estimating the unknown source 
emission rate. Tests with constant source function and constant wind speed as well as with 
several forms of source term functions and variable wind speed are performed. The results 
showed that the formulation of the methodology is more general and can be extended to take 
into account variable meteorological conditions. In addition, other assumptions i.e., 
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uncorrelated errors of source function estimation, root mean square error of the observations 
either constant or proportional to the values of the observed concentration, are also discussed.  
 
DESCRIPTION OF METHOD 
The problem of atmospheric dispersion forecast with the assimilation of the data of available 
concentration measurements is considered. In the model used in this study (a simplified 
version of the DIPCOT model, Bartzis et al., 2000) the concentration CM at a point with 
coordinates (X, Y, Z) is calculated as the contribution of all the L puffs present in the 
computational domain: 
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Where (Xp,  Yp,  Zp) are the coordinates of the centre of each puff p,  (s xp,  syp, szp) are the 
standard deviations of the dis tribution of matter in each puff, representing the puff size in the 
alongwind, crosswind and vertical directions respectively and Zg is the ground height at the 
location (X, Y). Mp is the “load” (e.g., mass, radioactivity) of each puff.  It is assumed that the 
puffs are released at regular time intervals ∆t, qp is the (average) source emission rate during 
the release of puff p. 
 
In atmospheric dispersion the pollutant emission rate is of particular importance since the 
pollutant concentration is linearly dependent on it. However, in the event of an accidental 
hazardous pollutant release usually there is a large uncertainty regarding the time evolution 
and the magnitude of the source term. Based on the above facts the vector of control variables 
in the present study has been selected to include the source emission rates corresponding to 
the release of each model puff. By the above selection it is implied that other parameters, such 
as the duration of the release or the puffs coordinates, are assumed known and they are not 
adjusted by the data assimilation procedure. 
 
More specific, the model-calculated concentrations M

nkC  (the measurement locations 1 = k = 
K, and the measurement times 1 = n = N ) are defined as:  

qGC ⋅=M     (2) 
G is a matrix with dimensions [ ]LKN ×× )( , such as its ith row is defined as follows: 

( ) nki RG =∗,     (3) 
Where: nNki +×−= )1( , ( NKi ×≤≤1 ), [ ]Lpknpftnk ≤≤×∆= 1),,,(R , and f  is 
obviously defined by equation 1. Finally the cost functional concerning our problem is 
defined as:  

( ) ( ) ( ) ( )B
T

B
OTOJ qqBqqqGCOqGC −−+⋅−⋅−= −− 11     (4) 

Where, Bq  is the first guess of the source rates, O  is the covariance matrix of the observation 
errors, B  is the covariance matrix of the background errors and OC  is the observations 
matrix. In formula (4) the first term characterizes the difference of the analyzed vector of 
control variables with the measurements. The second term characterizes its difference with the 
first guess.  
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In order to calculate the values of q that minimize J , the functional J  is differentiated with 
respect to vector q and the derivative is set equal to zero , 0=∂∂ qJ .  
And, consequently the next equation is obtained: 

( )( ) ( ) B
OTT

qCGBOqGGBOI +=⋅+ −− 11     (5) 
If observational errors are uncorrelated (Daley, (1991)) and constant equation (5) becomes: 

( ) BO
TT qCGqGG 22 σσ +=⋅+     (6) 

Where, 22
BO σσσ = , If the observational errors are assumed proportional to the values of 

observed concentration e.g. ( )22
,

O
nknkO Ca=σ  (as in Lary and Fisher, (1995)), then from 

equation (5) the following equation is obtained: 
( ) B

OTT qCGqGG 2
modmodmod

2
mod σσ +=⋅+     (7) 

Where, GCG ⋅= −1
newmod  and 222

mod Ba σσ = . 
From the equations (6, 7) q is calculated. 
 
APPLICATIONS-RESULTS 
For the evaluation of the data assimilation algorithm performance, “identical twin” 
experiments were used, due to lack of real experimental data.  The dispersion model generates 
“concentration observations” us ing a “true” source term function.  Then the model is run 
again using an “assumed” source term and assimilating the observations with the aim to 
evaluate the true source function. For simplicity reasons, the applications concern 1-
dimensional dispersion. First some test results are presented in the figures 1 and 2 having 
constant emission rate constant wind speed and one observation point with 
coordinates ( ) ( )0,0,m5000,, =mmm ZYX . Figure 1 indicates the important dependence of the 
quality of adjustment on values of σ . The adjustment of source function improves as the 
values of σ decrease. This is expected, because small σ  means small error of measurements, 
and in this case the measurements are given higher weights. At this point it should be noted 
that the maximum value of σ  for which results can be considered satisfactory, i.e., 1710−=σ , 
would not produce as good results, if concentrations were measured at a point with greater 
distance from the source. This is because the concentrations there are significantly (possibly 
by orders of magnitude) smaller.  Therefore, for them to be given a considerable weight 
σ should also be correspondingly smaller. The way to overcome this undesirable behaviour is 
to abandon the assumption of constant σ  and assume that s  is proportional to observed 
concentrations. In the following test cases the root mean square error of the observations, is 
proportional to the values of concentration observed and the improvement of results it can be 
clearly seen (figure 2). In figure 3 the test results for variable in time source term and variable 
in space wind speed are presented having three measurement points with coordinates: 
( ) ( )0,0,m5000,, 111 =mmm ZYX , ( ) ( )0,0,m10000,, 222 =mmm ZYX ( ) ( )0,0,m20000,, 333 =mmm ZYX  
 
CONCLUSIONS 
In the current work the algorithm of variational data assimilation is developed, that allows 
adjustment of source function in puff/particle model for non-stationary (wind and source) 
conditions. In the present work the test case with constant wind speed and constant source 
function was considered in the first place. Additionally constant relative error (error of 
observation measurements to the error of source function estimation) was assumed with 
assimilated data from a single measurement point. The results showed that the constant 
relative error cannot be used in real world problems, and the assumption of error of 
observations proportional to the concentrations was adopted. Additionally tests with variable 
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in time source term function and with three measurements points were carried out. Finally 
tests with variable wind speed showed that the formulation of the methodology is more 
general and can be extended to take into account variable meteorological conditions.  
 

0

2000000

4000000

6000000

8000000

10000000

12000000

0 500 1000 1500 2000

t(s)

q(
µg

/s
)

q"True" q"First guess" q"adjusted",s=1E-22

q"adjusted",s=1E-17 q"adjusted",s=1E-16

Figure 1: Estimation of “true” source function by the simulation runs for different values of 
σ . The “true” source function ( Tq ) (at the times of puffs releases), the background ( Bq ) and 
the adjusted source functions ( Aq ) are presented. 
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Figure 2: The adjusted source function ( Aq ) for the case that the RMS error of the 
observations is constant and for the case that the RMS error of the observations is 
proportional to the values of concentration are compared with the “true” (qB) and the 
background source functions (qT) (at the times of puffs releases) 
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Figure 3: Estimation of source function in the case of variable in time emission rate and 
variable wind speed. The “true” source function ( Tq ) (at the times of puffs release), the 
background ( Bq ) and the adjusted source functions ( Aq ) are presented 
 
REFERENCES 
 
Astrup P., C. Turcanu, R.O. Puch,C. Rojas Palma, T.Mikkelsen, 2004: Data Assimilation in 
the early phase: Kalman Filtering RIMPUFF, RODOS(RA5)-TN(04)-01 
Bartzis J., Davakis E., Andronopoulos S., 2000: DIPCOT: A Lagrangian  model for 

atmospheric dispersion over complex terrain, Model Description, “DEMOKRITOS” 
Report. 

Daley, 1991: Atmospheric Data Analysis, Cambridge University Press 
Drews, M., Lauritzen, B., Madsen, H., 2005: Analysis of a Kalman filter based method for on-

line estimation of atmospheric dispersion parameters using radiation monitoring data, 
Radiation Protection Dosimetry 113 (1), pp. 75-89 

Fisher M., Lary D.J., 1995: Lagrangian four-dimensional variational data assimilation of 
chemical species, Quarterly Journal - Royal Meteorological Society 121 (527), pp. 
1681-1704 

Jeong, H.-J., Kim, E.-H., Suh, K.-S., Hwang, W.-T., Han, M.-H., Lee, H.-K, 2005: 
Determination of the source rate released into the environment from a nuclear power 
plant, Radiation Protection Dosimetry 113 (3), pp. 308-313 

Kathirgamanathan, P., McKibbin, R., McLachlan, R.I., 2004: Source release-rate estimation 
of atmospheric pollution from a non-steady point source at a known location, 
Environmental Modeling and Assessment 9 (1), pp. 33-42 

Le Dimet F.X., and Talagrand O., 1986: Variational algorithms for analyses and assimilation 
of meteorological observations: theoretical aspects. Tellus B, 38A, p.97-110 

Quélo, D., Sportisse, B., Isnard, O. ,2005: Data assimilation for short range atmospheric 
dispersion of radionuclides: A case study of second-order sensitivity, Journal of 
Environmental Radioactivity 84 (3), pp. 393-408 

Segers A., 2002: Data assimilation in atmospheric chemistry models using Kalman Filtering, 
PhD Thesis, Delft University, published by DUP Science, 220 p. 

Zheng D. Q., Leung J. K. C., Lee J. K. C., Lam H. Y., 2006: Data assimilation in the 
atmospheric dispersionmodel applied to nuclear accident assessments, Atmospheric 
Environment (submitted) 


