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INTRODUCTION  
Complex models include a large number of poorly known parameters. While data are useful 
to validate and improve the numerical models, the assimilation of these is now recognized as 
the most efficient way to improve consistency between data sets and model simulations 
(Triantafyllou et al., 2003). State estimation through data assimilation is a key to the 
development of appropriate forecasting systems. 
 
In the framework of the Air4EU project, a simplified data assimilation (DA) methodology 
was developed, aiming to improve the air quality models performance at local, urban and 
regional scales. This work was focused on the enhancement of the urban scale model OFIS, 
by means of the developed DA tool. The DA tool is based on the Sequential Importance 
Resampling (SIR) method, a technique that makes no assumptions of linearity in the model 
equations, nor that the model or observation errors should be Gaussian, in contrast with most 
other well-known methods of data assimilation, such as the optimal or statistical interpolation 
methods, the three-dimensional or four-dimensional variational data assimilation method, or 
different variants of the Kalman filter.  
 
METHODOLOGY 
DA has been widely applied in various research fields for several modules in the last two 
decades, especially in the field of atmospheric dispersion, deposition, numerical weather 
prediction or meteorological pre-processing which produces meteorological data for the 
emergency response systems, food chain and hydrological modules and oceanic sciences 
(Kovalets et al., 2003). van Loon et al. (2000) introduced DA in an atmospheric transport 
chemistry model to improve modelled ozone concentration.  
 
A Bayesian view is taken in which the prior probability density of the model and the 
probability density of the observations are combined to form a posterior density. The mean 
and the covariance of this density give the variance-minimizing model evolution and its 
errors. At the same time, observational error can be reduced and information about model 
errors can be generated. Using Bayesian statistics one can consider the probability density of 
the model forecast as prior information, which is ‘‘updated’’ by the observations. This results 
in a new probability density of the model, given the observations. 
 
The SIR method (van Leeuwen, 2003) is a relatively new data assimilation method that is 
truly variance minimizing, as no matrix inversions are needed, the observations can be 
distributed non-Gaussian, and the measurements can be nonlinear. Furthermore, it preserves 
prior model constraints such as positive definiteness, unlike Kalman filter–like methods that 
mix states at analysis time, and provides error estimates, unlike 4DVAR-like methods. 
Finally, it is easy to implement and parallel, by its very nature. Another interesting feature of 
the method is that the variance of the posterior density can be larger than that of the prior 
density. 
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APPLICATION 
A tool was developed based on the SIR method (Walker et al., 2006) and applied using the 
OFIS model results. The tool initially calculates the probability density functions (pdfs) of 
both observed and modelled concentration values which are coupled and combined using the 
Bayes Theorem to derive an assimilated value. Several types of distributions were included in 
the tool such as normal, log-normal, Cauchy. However, for the current study only the normal 
distribution was applied. 
 
The SIR DA tool was applied to a number of air pollution concentrations, including NO2, NO, 
O3 and PM10, for the Greater Athens Basin, Greece and the OFIS model results for the same 
time period. A one year long data set (2002) is being used, consisting of hourly air pollutant 
concentrations, as resulting from the operation of the corresponding monitoring networks at 
the stations of Agia Paraskevi, Liosia, Lykovrisi, Marousi, Patision, Pireaus and 
Thrakomakedones. This time period was selected on the basis of data homogeneity 
availability and completeness. Information on the air pollution monitoring network of Athens 
can be found in Directorate of Air and Noise Pollution, 2005.  
 
The OFIS model is a photochemical dispersion model for calculating ground level of several 
air pollutants (like NO, NO2, O3, PM10 and PM2.5) concentrations in and around urban areas 
(Moussiopoulos and Sahm, 2001). It belongs to the European Zooming Model system (EZM), 
a comprehensive model system for simulations of wind flow and pollutant transport and 
transformation (Moussiopoulos, 1995). 
 
RESULTS AND DISCUSSION 
The observed, modelled and “assimilated” concentrations of NO2, NO, O3 and PM10 were 
compared and evaluated using certain statistical performance measures (Wilmott, 1982; 
Wilmott et al., 1985) like the mean value, bias, correlation coefficient (CC) between observed 
and modelled values, normalised mean square error (NMSE) and the index of agreement (IA) 
that is sensitive to differences between the observed and model means as well as to certain 
changes in proportionality. 
 
The results are presented in Tables 1-4 for the NO2, NO, O3 and PM10 concentrations (in 
µg/m3) respectively at the monitoring stations under investigation for the year 2002. 
 
Table 1. Performance statistics for NO2 observed (obs), modelled (OFIS) and assimilated 
(ass) values (in µg/m3) at the monitoring stations of Agia Paraskevi, Liosia, Likovrisi, 
Marousi, Patision, Pireaus and Thrakomakedones for the year 2002. 

 MEAN BIAS NMSE CC IA 
  obs  OFIS  ass OFIS  ass OFIS  ass OFIS  ass OFIS  ass 
AG.PAR 18 19 18 0.84 -0.01 0.97 0.32 0.141 0.871 0.59 0.89 
LIOS 41 36 34 -5.24 -6.33 1.51 0.42 0.056 0.620 0.51 0.79 
LYK 37 38 34 1.15 -0.86 0.59 0.20 0.208 0.813 0.55 0.86 
MAR 42 44 41 1.91 -0.74 0.52 0.16 0.214 0.805 0.53 0.86 
PAT 92 91 85 -0.07 -5.80 0.33 0.10 0.058 0.584 0.43 0.77 
PIR 65 58 54 -7.91 -6.85 0.38 0.12 0.175 0.696 0.58 0.83 
THRA 11 13 11 2.32 0.78 2.27 0.75 0.027 0.702 0.49 0.84 
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Table 2. Performance statistics for NO observed (obs), modelled (OFIS) and assimilated (ass) 
values (in µg/m3) at the monitoring stations of Agia Paraskevi, Liosia, Likovrisi, Marousi, 
Patision, Pireaus and Thrakomakedones for the year 2002. 

 MEAN BIAS NMSE CC IA 
  obs  OFIS  ass OFIS  ass OFIS  ass OFIS  ass OFIS  ass 
AG.PAR 3 43 13 39 10 51.56 5.56 0.132 0.454 0.06 0.44 
LIOS 27 17 14 -10 -4 11.57 1.07 0.204 0.845 0.48 0.92 
LYKO 23 42 21 19 -1 6.61 2.27 0.327 0.706 0.49 0.82 
MAR 35 46 28 11 0.02 5.37 0.96 0.349 0.889 0.59 0.93 
PAT 132 56 68 -75 -41 2.53 0.49 0.317 0.815 0.55 0.86 
PIR 54 29 30 -26 -14 3.32 0.73 0.376 0.834 0.62 0.87 
THRA 6 2 5 -4 -0.59 4.33 1.04 0.134 0.534 0.63 0.79 

 
Table 3. Performance statistics for O3 observed (obs), modelled (OFIS) and assimilated (ass) 
values (in µg/m3) at the monitoring stations of Agia Paraskevi, Liosia, Likovrisi, Marousi, 
Patision, Pireaus and Thrakomakedones for the year 2002. 

 MEAN BIAS NMSE CC IA 

 obs  OFIS  ass OFIS ass OFIS  ass OFIS  ass OFIS  ass 

AG.PAR 93 70 72 -21 -18 0.67 0.19 0.499 0.721 0.58 0.79 
LIOS 64 69 62 5 -2 0.52 0.15 0.440 0.868 0.78 0.94 
LYK 58 47 49 -10 -9 0.68 0.19 0.574 0.860 0.80 0.93 
MAR 51 37 41 -134 -10 0.82 0.24 0.541 0.856 0.76 0.91 
PAT 18 23 19 4 1 1.69 0.47 0.383 0.817 0.69 0.91 
PIR 43 42 38 0,1 -3 0.82 0.23 0.489 0.843 0.69 0.91 
THRA 94 73 78 -20 -13 0.23 0.08 0.492 0.773 0.91 0.96 

 
Table 4. Performance statistics for PM10 observed (obs), modelled (OFIS) and assimilated 
(ass) values (in µg/m3) at the monitoring stations of Agia Paraskevi, Liosia, Likovrisi, 
Marousi, Patision, Pireaus and Thrakomakedones for the year 2002. 

 MEAN BIAS NMSE CC IA 
  obs  OFIS  ass OFIS  ass OFIS  ass OFIS  ass OFIS  ass 
AG.PAR 38 26 25 -11 -8 2.38 0.51 -0.340 0.667 0.57 0.85 
LYK 62 34 36 -31 -19 1.72 0.45 0.088 0.669 0.42 0.70 
MAR 69 38 26 -27 -19 2.55 0.74 0.091 0.749 0.69 0.89 
PIR 62 40 35 -22 -18 1.98 0.49 -0.002 0.592 0.56 0.82 
THRA 34 22 20 -13 -9 2.31 0.56 0.041 0.699 0.62 0.86 

 
As it can be pointed out, the use of the developed DA tool in the OFIS model resulted in 
major improvements almost in all indexes for each pollutant, even in cases where the model 
has a poor performance, like at the Liosia station for NO concentrations, PM10 concentrations 
at stations with available data. The NMSE was significantly reduced, expressing a decrease of 
the systematic error accounted to the model. At the same time, the correlation coefficient 
states an improved ability to capture the linear connection between observations and 
assimilated values. Last but not least, the IA, which allows for sensitivity toward difference in 
observed and predicted values as well as proportionality changes, indicates a satisfactory 
enhancement of the model results when the DA is applied.  
 
Figures 1-2 present a random time series of the observed, modelled and assimilated hourly 
average values (all in µg/m3) of all studied pollutants indicatively for the monitoring stations 
of Thrakomakedones and Agia Paraskevi. 
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Fig. 1; Time series of the observed and predicted hourly average concentrations (in µg/m3) of 
a) NO2, b) NO, c) O3 and d) PM10 at the Thrakomakedones monitoring station.  
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Fig. 2; Time series of the observed and predicted hourly average concentrations (in µg/m3) of 
a) NO2, b) NO, c) O3 and d) PM10 at the Agia Paraskevi monitoring station.  
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However, the DA tool performance is not very sufficient in cases when the pollutant does not 
follow the normal distribution, reflecting some abnormal situations and distinct episodes, such 
as the presence of uncontrolled factors with dispersion from urban environments or huge 
variability due to emission sources and extreme or unstable meteorological conditions. Thus, 
the implementation of different kind of distribution should be performed in a following study. 
Nevertheless, the quality and usefulness of the application of the DA technique is reflected in 
abnormal situations and distinct episodes. 
 
CONCLUSIONS 
The suggested approach seems to be attractive because it can handle complex phenomena that 
cannot be appropriately described by the numerical equations of a model. The results indicate 
that overall the model without data assimilation performs well in simulating the trend and 
magnitude of the observed concentrations, with a small bias towards under prediction. Air 
quality episodes are unique and the relative processes and variables are seldom linear. Data 
Assimilation is the ensemble of techniques combining in an optimal way the mathematical 
information provided by the model equations and the physical information given by the 
observation in order to retrieve the natural state space of a process. The goal of DA is to link 
together these heterogeneous (in nature, quality and density) sources of information in order 
to retrieve a coherent state of the environment at given conditions. 
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