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INTRODUCTION  
Some of the most common types of dispersion models are the Lagrangian Particle models, 
which are based on the assumption that the evolution of a tracer particle’s state (velocity-

position) is a Markovian process. The particle’s displacement is expressed as dttudx ii )(=  
where ui is the Lagrangian velocity, xi is the particle’s position coordinate in the ith direction, 
t is time and dt is the time increment.  The velocity increment is calculated statistically from 
the Langevin equation (Thomson, 1987):  

joijijijii dWCdttadWtbdttadu εδ+=+= ),u,x(),u,x(),u,x(   (1) 
where ai is the drift term in the direction i, dij is Kronecker’s delta and bijdWj is a random 
forcing caused by the fluctuating pressure gradients and molecular diffusion with dWj being 
the one-dimensional increments of a Wiener process – a Gaussian random forcing with zero 
mean and variance dt. In order for the Langevin equation to be consistent with the 
Kolmogorov’s theory of local isotropy at high Reynolds numbers in the inertial subrange 
(Monin and Yaglom, 1975, pp. 358-359), the term bij is expressed in equation (1) as function 
of the mean dissipation rate of turbulent kinetic energy ε , and the constant Co (Thomson, 
1987; Luhar and Britter, 1989). The constant Co is called “inertial subrange Kolmogorov 
constant” or “universal constant for the Lagrangian structure function”. According to 
Kolmogorov’s hypothesis (Du, 1997), “this value is supposed to be universal, i.e. it should 
take the same value for any turbulent flow, provided that the Reynolds number is sufficient 
high (so as to ensure an inertial subrange is present)”. However, contrary to the term 
“universal constant” there is a considerable uncertainty about the value of Co, which presents 
a matter of discussion. Over the last thirty years different investigators indicate different 
values of Co ranging mainly between 2 and 6 based on theoretical assumptions, on 
Lagrangian and Eulerian measurements, on observed dispersion of fluid particles and from 
numerical experiments (e.g., Du, 1997; Lien and D’Asaro, 2002; Rizza et al., 2006). Heinz 
(2002) in order to explain the reasons for the observed variations considers the velocity 
fluctuations as the sum of contributions due to anisotropy, acceleration fluctuations and 
stochastic forcing that are controlled by the Kolmogorov constant. He argues that the effects 
of anisotropy and acceleration fluctuations are responsible for the significant variations of Co 
and claims that Co is near 2 for flows, where anisotropy and acceleration fluctuations 
contribute to the energy budget (for the real non isotropic, non-homogeneous atmospheric 
turbulent flows) and near 6 if such contributions disappear. 
 
In this work, to evaluate the most appropriate values of Co for use in atmospheric dispersion, 
the 3-dimensional Lagrangian particle dispersion model DIPCOT (Davakis et al. 2005, 
Davakis et al. 2007; Andronopoulos et al., 2005) was applied to simulate a wind tunnel 
experiment, using the Langevin equation (1) with values of Co in the range between 1 and 6.  
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EXPERIMENTAL APPARATUS AND MODEL DESCRIPTION 
A cylinder was placed parallel to a flat plate and normal to the flow (Figure 1). The cylinder 
was positioned above the boundary layer, so that the lower part of the wake was interacting 
with the boundary layer, producing a complex quasi two-dimensional flow at the upper part of 
the boundary layer and above it. Near the plate a fully non-homogeneous turbulent flow is 
developed. Heat was supplied to the boundary layer flow by means of an electrically heated 
wire. Since the Prandtl and Schmidt numbers for gases are both close to unity and the heat 
dispersion exhibits the same features as the mass dispersion, this study is considered 
equivalent to atmospheric dispersion over complex terrain. Hot-wire anemometry was used 
for the measurements with a triple-wire probe. During the experiment, the triple-wire probe 
recorded simultaneously the streamwise and the normal to the wall velocity components and 
the temperature. The probe was traversed normal to the plate, taking measurements at 41 
observation heights, at five measuring downwind distances x/D (D is the cylinder diameter) in 
the streamwise direction. A schematic representation of the flow field is given in Figure 2.  

 
Fig 1; The experimental setup. 

 
Fig. 2; Schematic representation of the experimental flow created in the wind tunnel. 
 
EVALUATION PROCEDURE FOR “BEST PERFORMING” CO VALUES 
To evaluate the most appropriate values for Co, the model-calculated and measured mean 
temperature rise ∆T at each observation point were inter-compared. Well-known statistical 
tools (e.g., Mosca et al., 1998) were used to quantify the level of agreement, such as: the 
Fractional Bias (FB) and the Geometric Mean bias (MG) with their 95% confidence limits, 
the Normalized Mean Square Error (NMSE), the Geometric Variance (VG), and the FACTor 
of 2 (FACT2). The cases where model results agreed best with the observations indicated the 
“best performing” Co values. 
 
The main study to evaluate the effects of the Co values on the model results was carried out 
using the formulation of the drift term a in Langevin equation (1) proposed by Franzese et al. 
(1999). In addition, and to examine whether and to what extend the formulation of the drift 
term, a, can affect the choice of the “best performing” Co values, the study was repeated (with 
less detail) using the drift terms proposed by Luhar and Britter (1989) and by Weil (1990). 
 
RESULTS 
In Table 1 the FACT2 values obtained for the different values of Co and drift term models are 
presented. The best model performance is indicated by the higher FACT2 values which occur 
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when Co is between 2 and 4. 
Table 1. FACT2 values (%) for different Co values for the three formulations of the drift term 
in Langevin equation. 
Co      à 
Drift term model 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 

Franzese et al. 56 77 84 85 84 84 82 74 66 
Luhar and Britter 38  66  67  67 63  
Weil 57  71  70  67 67  
 
Figures 3a and 4a lead to the same conclusions: the model presents the smaller deviations 
from the measurements (i.e., the lower NMSE and VG values) for Co between 2 and 4. 
Moreover the FB and NMSE values are closer to zero and unity and have the smaller 
confidence interval. The use of different formulations for the drift term does not change the 
above outcomes. In the other two cases that were examined (Luhar and Britter, Weil), the 
model performs better when Co is between 2 and 4. However, looking at the statistical indices 
in table 1 and figure 3 and 4 (cases b and c), it can be seen that the value of Co equal to 5 can 
also be included in the accepted range. 
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Fig. 3; NMSE vs FB (with their 95% confidence limits) values of the model performance for 
different Co, for the three used formulations of the drift term in Langevin equation: (a) 

Franzese et al., (b) Luhar and Britter (1989) and (c) Weil (1990). 
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Fig. 4; VG vs MG (with their 95% confidence limits) values of the model performance for 

different Co, for the three formulations of the drift term in Langevin equation: (a) Franzese et 
al., (b) Luhar and Britter (1989) and (c) Weil (1990). 

 
However there isn’t a single Co value that can be pointed out, giving the best fitting between 
experimental and theoretical mean concentrations (temperatures). For the formulation of 
Franzese et al. (1999), FACT2, FB and NMSE point at Co=2.5, while MG and VG suggest 
that the model behaves better when Co=3.5. This could be explained because FB and NMSE 
give more weight to the higher values while MG and VG to lower and FACT2 expresses the 
overall performance. Moreover, for the same statistical indices the best Co value depends also 
on the formulation of the drift term: MG and VG for the Luhar and Britter (1989) and Weil 
(1990) models indicate different Co values (2 and 3, respectively). Nevertheless, suggested 
values for Co according to the present study lie in the range between 2 and 3, since in the vast 
majority of the examined cases the statistical indices indicate the best agreement of model 
predictions with measurements. 
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Summarizing the results of this work, we can argue that the choice of Co crucially affects the 
performance of Lagrangian dispersion models that use the Langevin equation. The analysis 
indicates that for atmospheric dispersion Co should be between 2 and 4, with more weight 
between 2 and 3, since for these values the model performance is optimized. This conclusion 
is compatible with the suggestions of other researchers for atmospheric flows (e.g., Thomson, 
1987; Anfossi et al., 2000; Pope and Chen, 1990; Du, 1997; Heinz, 2002; Rizza et al., 2006).     
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