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INTRODUCTION 
Clustering techniques for the classification of air mass trajectories used in the past varied 
widely, based on different hierarchical and non-hierarchical approaches. Recently, Artificial 
Neural Networks have gained interest and are increasingly recognized as a useful statistical 
technique for the prediction and classification of both environmental and meteorological data. 
In this paper, we firstly introduce a method to define the appropriate number of clusters for 
the classification of atmospheric trajectories. Using the defined number of clusters we 
compare a hierarchical, a non-hierarchical clustering technique (K-means algorithm), and two 
Neural Network’s Self Organizing Maps (SOM) to classify back trajectories.  
 
Further to the weather types occurring in an area, it is important from an environmental point 
of view to know the source and path of air masses reaching this area. This can be achieved by 
classifying back trajectories into clusters. In order to analyse the influence of transport 
patterns on pollutant concentrations in the atmosphere, several multivariate techniques 
including statistical clustering methods can be applied to modelled back trajectories (Dorling 
and Davis, 1995; Borge et al., 2007). The time varying coordinates of the back trajectories 
can be used as the clustering variables, leading to the identification of distinct groups with 
similar characteristics, i.e. similar behaviour of their direction of approach and speed of 
passage over potential pollution source areas. The trajectory types are more readily 
interpretable in terms of the synoptic conditions that form them. Large scale circulation 
features are associated with certain trajectory clusters. Furthermore, trajectory clustering 
schemes are increasingly used to identify links between origin/path of an air mass and air 
quality.  
 
In recent years, artificial neural network and fuzzy logic techniques have gained interest and 
are increasingly recognised as promising techniques for the prediction and classification of 
not only environmental but also meteorological data (Hewitson and Crane, 2002). The aim of 
this study is to: (a) Introduce a method for defining the appropriate number of atmospheric 
trajectory clusters, (b) apply several clustering techniques, examine their performance and 
compare the resulted back trajectory groups, (c) interpret the variability of daily PM10 
averages recorded at three monitoring stations in Athens using the obtained trajectory 
clusters, and discuss the implications for air quality management. 
 
DATA AND METHODOLOGY 
5-day long kinematic back trajectories arriving in Athens, Greece (37.2 latitude, 23.47 
longtitude), every day at 12.00 UTC during a four-year period (2001-2004) were used. These 
trajectories were calculated with version 4 of the model HYSPLIT developed by NOAA Air 
Resources Laboratory (Rolph, 2003). The back trajectories were computed at 500 m above 
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ground. In addition, daily mean PM10 concentrations estimated from hourly recorded values at 
three air quality monitoring stations in Athens were used. In this study we employed a 
variation of a graph-based method (Salvador and Chan, 2004), in order to define the 
appropriate number of back trajectory clusters. Three different clustering approaches, namely 
Hierarchical clustering, non-hierarchical K-means algorithm and Self-Organizing Maps, were 
used in order to classify individual back trajectories into groups.   
 
RESULTS AND DISCUSSION 
Following the above methodology, the appropriate number of clusters was set to six. The 
description of the origin and path of each one of the six clusters is presented below: 
Group A. It has its origin either over Sahara desert or over the Gulf of Sidra or Tunis or the 
maritime area between Africa, Sicily and Peloponnesus. It is a rather slow moving mean 
centroid reaching Athens from southern directions when it passes over the sea carries 
particulates either from Sahara or from the sea (salt particulates) or both. In some cases it will 
be the result of local circulation or recirculation around Athens. 
Group B. Initially the air mass is over the wider area of Western Ukraine, South Poland, 
Slovakia, Austria and Hungary. Then it crosses Eastern Balkans (in some cases western 
Balkans) arriving in Athens after its passage through Northern Greece or the Aegean Sea. It is 
a rather slow moving regime.  
Group C. The origin of the air mass is over Russia. The air mass is moving towards the areas 
of Crimea peninsula and Black sea, passes over eastern Thrace, North Aegean Sea reaching 
Athens from north-eastern directions.     
Group D. This regime is a fast moving one. It takes out from north Germany, Poland or 
Scandinavia and it crosses central-west Europe arriving in Athens after its passage over the 
Balkans.  
Group E. It is the faster moving regime. Its origin is over mid-Atlantic. It passes over British 
isles, France, Northern Italy and the Adriatic Sea arriving in Athens from north west. 
Group F. The origin of the air mass is over the Pyrenees Mountains (Gulf of Lion) or 
Western Mediterranean, it crosses South Italy reaching Athens from the west. It is a rather 
slow moving mean back trajectory. 
 
In general, at 500m height, the Hierarchical and K-means clustering approaches present quite 
similar results (Fig. 1). The only difference found was the origin of Group B which was over 
Austria in K-means, but over Ukraine in the Hierarchical approach. The two SOM 
classifications (for 1X6 and 2X3 dimensions) produced nearly identical results and quite 
similar with those of the Hierarchical approach. The results estimated with different clustering 
approaches show that there is larger variability between Hierarchical and the other two 
approaches than between K-means and SOM. Specifically the Pearson correlation coefficient 
(R) ranged between 0.429-0.369 for the pairs of Hierarchical with the other three approaches, 
while the respective correlation coefficients between K-means and SOM ranged between 
0.577-0.548. Also the variability of the percentage of days attributed to each cluster was very 
high between Hierarchical and the other three techniques, but smaller between K-means and 
SOM. Groups A, D and F were found to be more stable.  
 
Both SOM approaches, did not present differences in the distribution of days in different 
trajectory clusters. The higher differences were detected in Group F in SOM 2X3. R ranged 
between 0.588 and 0.703 for SOM 2X3 and between 0.607 and 0.703 for SOM 1X6. It is 
interesting to compare the results of the two SOM alternative procedures. It was found that 
the two SOM techniques (with dimensions 2X3 and 1X6) produced very similar results (R = 
0.852).  
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Since the focus of this work was to reveal the impact of different atmospheric transport 
regimes on air quality in Athens, an examination of daily PM10 concentrations corresponding 
to different back-trajectories clusters was carried out.  

 
 

 
Fig. 1; Centroids of cluster analysis at 500m for (a) Hierarchical, (b) K-means (c) SOM 1X6 

and (d) SOM 2X3 approach. Percentage of occurrence for each cluster is shown in ( ). 
 
Table 1. Mean PM10 concentrations (µgr/m3) per cluster mean trajectory arriving in Athens at 
500m for Hierarchical, K-means, SOM 1X6 and SOM 2X3 at three air quality stations . 

Hierarchical K-means SOM 1X6 SOM 2X3 Transport 
Regime 
at 500-m THR LYK PEI THR LYK PEI THR LYK PEI THR LYK PEI 

A 39.2  66.0 65.2 42.8 69.0 66.0 40.8 67.9 61.2 41.9 69.9 66.0 
B 29.0 55.4 58.8 32.6 64.1 62.9 24.3 70.0 66.7 29.6 55.4 56.9 
C 26.0 46.8 51.5 26.7 48.8 53.0 27.8 51.0 52.2 27.6 50.2 53.9 
D 22.6 52.9 49.7 28.7 48.9 51.4 29.4 50.2 54.0 24.9 52.1 52.4 
E 36.7 76.1 54.8 24.5 63.9 54.8 30.5 55.5 56.4 29.0 68.2 55.5 
F 38.6 69.5 61.7 42.4 71.5 58.8 40.3 70.3 55.6 39.7 68.7 60.6 

 
Three PM10 monitoring stations were selected. The first of semi rural character is located in 
the northern western periphery of the city (THR). Since in the vicinity of this station there are 
no significant source of particulates, it is assumed that it can give indications of possible long 
range transport. Additionally, one suburban background (LYK) and one traffic oriented (PEI) 
stations were selected to check for potential contributions from long range transport to the 
observed PM10 concentrations.  



Proceedings of the 11th International Conference on Harmonisation  
within Atmospheric Dispersion Modelling for Regulatory Purposes 

Page 99 

GROUP A-500m Six clusters

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 2 3 4 5 6 7 8 9 10 1 1 12

MONTH

N
O

R
M

A
L

IZ
E

D
 P

M
10

THR
LYK
PEI
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GROUP C 500-m Six Clusters

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

1 2 3 4 5 6 7 8 9 10 1 1 12

MONTH

N
O

R
M

A
L

IZ
E

D
 P

M
10

THR
LYK
PEI

GROUP D 500-m Six Clusters
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GROUP E 500-m Six clusters
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GROUP F 10-m Six Clusters
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Fig. 2; Monthly distribution of the normalized PM10 values per Group computed with the K-

means approach at 500m above ground. 
 

The mean PM10 concentrations in the semi rural station THR are higher on days attributed to 
Group A mean trajectory centroids in all four clustering approaches (Table 1). These high 
values indicated possible long range transport of particulates either from Sahara desert or 
from the Mediterranean Sea or both. The second higher values are associated with Group F 
mean trajectory centroids. Group F describes back trajectories having their origin over the 
western Mediterranean and arriving in Athens from the west. The lowest PM10 values are 
associated with Groups C and D mean back trajectories. The origin of the trajectories 
belonging to these two groups is either Russia or Central Europe.  
 
The mean PM10 concentrations in the suburban background station LYK showed that in the 
majority of the cases Group A is associated with the highest or second highest daily values. 
The lowest values are associated again with Groups C and D (Table 1).  
 
Concerning the traffic oriented station PEI in all the approaches the higher PM10 values are 
associated with Group A (with the exception of SOM 1X6 in which group A is associated 
with the second highest values). The second highest values of PM10 are associated with Group 
F. Finally, the lowest values are associated with Groups C and D.  
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We also compared the variation of average PM10 concentrations between corresponding 
groups obtained using the different clustering approaches, but we did not found significant 
differences. The atmospheric transport regime described by Group A back trajectories is 
associated with the highest values of PM10 and produces consistent results in almost all three 
clustering approaches and stations. It is supposed that a significant transportation of 
particulates could also happen with Group F back trajectories.  
 
Monthly distribution of the recorded PM10 concentrations (Figure 2) showed that for Group A 
in all clustering approaches the highest normalized PM10 values for THR were detected 
during spring months (while for the other two stations, PEI and LYK, a lower increase was 
also detected). Previous studies have also indicated the higher frequency of this regime during 
spring months (Reference?). The transport regime representing by Group C (etesian winds) 
shows higher normalized PM10 values during June, July, August and April. A lower increase 
in PM10 is also detected for PEI and LYK stations during the same months. Group D and 
Group F have their peak during January and July, respectively.  
 
CONCLUSIONS 
From the above analysis the following conclusions could be drawn:  

• The Hierarchical approach seems very sensitive to fast and slow moving clusters, thus 
results should be interpreted with caution. 

• K-means produces more consistent results with SOM, although the variability of the 
percentages of occurrence is also small.  

• Neural network SOM methods performed significantly better than the Hierarchical 
clustering. SOM 1X6 seems to have slightly better performance than SOM 2X3.  

• Air masses having their origin over Sahara Desert and western Mediterranean Sea are 
associated with high values of mean PM10 in all cases. Air masses with such origins 
could be characterized as slow moving.     

• On the contrary, fast moving air masses having their origin over Russia, Ukraine or 
Central and North Europe are associated with the lowest daily mean PM10 in Athens.  
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