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INTRODUCTION 
Air quality problems produced by high levels of ozone (O3) has been of concern for their 
effects on human health. The city of Rome is a typical Mediterranean metropolitan area 
experiencing frequently pollution episodes, characterized by high concentrations of ozone, 
associated with hot sunny days and stagnant conditions. The spatial extension of these 
phenomena was only detected by monitoring networks data, which are often duty influenced 
by local emissions. In a recent modelling study conducted by Gariazzo et al (2007) the 
chemical transport model (FARM) has been applied to study primary and secondary 
gas/aerosol pollutants concentrations in the urban area of Rome. The comparison of FARM 
model results against observations has shown that, although the FARM model was able to 
predict the observed ozone diurnal concentrations at both urban and rural stations, the night-
time predictions were sometimes overestimated due to both an incorrect evaluation of the 
nocturnal vertical exchange coefficients kz and to missed local NOx emissions in rural areas.  
 
Among the complex systems it is well known that neural networks can work as universal 
approximators of non- linear functions and, consequently, can be used in assessing the 
dynamics of such systems. Usually, they have become a useful tool either where correct 
phenomenological models are not available or when uncertainty in input and output data 
complicates the application of deterministic modelling as may happen,  for example, in 
environmental systems. Pioneering works in developing Artificial Neural Net  (ANN) 
applications for short term forecasting in atmospheric systems has been conducted since the 
early 1990’s (e.g., Boznar et al., 1993,). ANN methods have been developed for forecasting 
daily maximum ozone levels in various urban areas, (Comrie 1997). Gardner and Dorling 
(1998) produced an overview of applications of ANN in the atmospheric sciences and in 1999 
tested the benefits of using a MLP to model NO2 concentrations in London relative to other 
statistical modelling approaches.  
 
All above environmental applications use the NN model as regression tools. Pelliccioni et al 
(2003, 2006) recently coupled ANN with air dispersion models to construct a modelling 
system able to better predict the ground concentrations of primary air pollutants respect to the 
results obtained using the dispersion model alone.  
 
In this work this methodology is applied for the first time to a secondary pollutant such as 
ozone. In particular the comprehensive Chemical Transport Model (CTM) (FARM) has been 
coupled with a Neural Network, to reconstruct pollution episodes occurring in the city of 
Rome. 
 
METHODOLOGY 
The CTM dispersion model, simulation periods and input data. 
The dispersion and the chemical evolution of the pollutants are based on the FARM model 
(Silibello et al., 2005). FARM is a three-dimensional Eulerian model dealing with the 
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transport and the multiphase chemistry of pollutants in the atmosphere. Photochemical 
reactions are described by means of SAPRC-90 chemical scheme (Carter, 1990).  
 
A nested approach with three domains has been employed, starting from the Italian national 
domain, down to the urban domain, embedded in a intermediate regional one. Based on 
typical local atmospheric circulations/synoptical conditions and on the occurrence of pollution 
episodes, as revealed by observations, three episodes were selected for the modelling study 
(20-24 June 2005; 25-29 July 2005; 9-13 January 2006).  
 
The meteorological fields on the three domains have been obtained by means of the RAMS 
(Cotton et al., 2003)  prognostic model using ECMWF analysis, at 0.5 degrees and 6 hours 
resolution, to get initial and boundary conditions. To better reproduce air fluxes within Rome 
urban area, the wind fields in the inner urban domain were calculated by means of the 
MINERVE (Aria Techn., 2001) diagnostic mass consistent model. The meteorological 
subsystem is completed by SURFPRO (ARIANET, 2005), a diagnostic module to produce 
PBL scaling parameters, dry deposition velocities and turbulent diffusivities fields, on the 
basis of the meteorological fields and landuse maps.  
 
As for the emissions, special attention has been paid for the urban traffic. Hour-by-hour traffic 
emission, related to the primary road network of Rome, have been produced by means of a 
traffic assignment model and by the TREFIC emission model (Nanni et al., 2005). The 
emission from the largest industrial emission sources was updated using either stack measured 
data or owner declarations. Emissions for other sectors have been developed starting from the 
available Lazio regional inventory (APAT 2000), updated to the year of interest using yearly 
emission trends. 
 
THE NEURAL NETWORK SET UP 
As neural net architecture, we used in our study a 3-layer perceptron model. The first input 
layer contains the input variables of the net. The second layer consists of the neurons of 
hidden layer (we tested the simulations with 8, 10 and 12 hidden neurons). The third layer 
consists of the concentration levels to be reproduced at the different urban stations. 
 
In our simulations, we tested different input variables to the net. As experimental variables, 
we consider the follows as input of NN: the daily hour, the CO, NO2 and O3 concentration 
predicted by FARM model and measured by monitoring stations, the meteorological and 
turbulence parameters (as temperature, mixing height, Monin-Obukhov Length, speed 
velocity pressure and global radiation) at different stations. The total data amount concerns 
1208 patterns, representing the seasonal episodes simulated by FARM model. 
 
In order to check the influence of every input parameter to MLP, we performed a pre-
elaboration using as input variables of net the single one parameters. We obtain the 
correlations coefficients for the ozone levels given in Table 1. 
 
In this preliminary elaboration, the most important input meteorological variables  to the net 
seems to be the temperature, mixing height, pressure and global radiation.  
In our NN simulations, we consider the Monin-Obukhov Length parameters as input variables 
to taking into account the turbulence conditions. 
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 NN Input 
Hour 0.55 
CO Meas 0.51 
CO FARM 0.60 
NO2 Meas 0.67 
NO2 FARM 0.69 
O3 FARM 0.85 
Temp 0.79 
HMIix 0.83 
1/L 0.44 
U 0.47 
Rad Glob 0.64 
UR 0.69 
Press 0.49 

Table 1 Correlation coefficients for the ozone levels 

 
RESULTS AND DISCUSSION 
Give the above considerations, in our simulation, we use as input variables of the net the 
followings  4 variables: the mixing height, the Monin-Obukhov Length, the air temperature 
and global Radiation and, most important, the Ozone concentration levels predicted by FARM 
model. The best MLP was obtained with 8 hidden layer. In our simulation we divided the data 
set in two side. The first set concerns the 60% of the monitoring stations data and was used 
during the training phase and the remaining  40% has been used for the generalization phase. 
The results are always all referred to generalisation phase. 
 
The NN weights corrections was performed using two methods: the coniugate gradient and 
the back propagation algorithms.  
 
During the training phase a good correlation coefficient was obtained (R=0.89), while for the 
generalization  a value of R=0.87 was achieved (table 2). 
 
Table 2. Correlation coefficients R related to application of FARM model and  integrated 
model (FARM-NN)  for train and test phase.  
 R 
FARM 0.71 
FARM+NN(Train) 0.89 
FARM+NN(Test) 0.87 
 
In the Figure 1 are shown the results coming from the generalization. It is to underline that 
this NN model present a good reproduction for all ozone  range.  
 
The Error distribution between the forecasting and measured levels shows a net improvement 
respect to the error distribution obtained with FARM model (Figure 2). A decrease of  
skweness can also be observed respect to the FARM alone.  
 
The error distribution shows an under-prediction of the observed ozone levels (as can be 
deduced by the negative sign of the mean error value (m) in the Table 3). This behaviour is 
systematic (as evident by the skewness of the error distribution) and the work of the Neural 
Net concerns the adjustment of the performance of the air dispersion model. 
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The mean of error distribution shows an improvement when we use the FARM-NN model 
(the mean error value is m=0.17) than FARM model alone (m=-2.79).  
 

O3measured = 1.0766 O3 Farm
R2 = 0.51

O3 measured = 0.847 O3 Farm-NN
R2 = 0.76
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Fig. 1; Ozone predicted and observed at different monitoring station using FARM and FSRM-

NN model. 
 
Table 3. Error distribution parameters (mean and standard deviation) between the 
forecasting and measured levels related to application of FARM model and  integrated model 
(FARM-NN) 

  FARM model Farm-NN model 
Mean of Error distribution (m) -2.79 0.17 
Stand Dev. of Error distribution 19.36 7.33 

 
The FARM model reproduce well ozone levels during the day, during the night the model 
under predict heavily the ozone pollutants levels. While during the day, NN have done no 
correction of ozone predicted by FARM, during the night (with high stability turbulence) NN 
model need to modify the ozone given by FARM model.  
 
The improvement of error distribution demonstrate that NN is able to reproduce the nocturnal 
ozone peak in the Rome urban area. 
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Figure 2. Distribution of error between Ozone predicted and observed at different monitoring 

station using FARM and FSRM-NN model. 
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CONCLUSIONS 
We have applied for a complex urban situations a mixed models composed by a deterministic 
model and a NN network.  The mixed model, validated using an urban Rome field campaign, 
shows good results.  
 
An improving of the model performance is observed, decreasing the mean error between the 
calculated values and the measured ones. Both during the training than generalization phases 
a good correlation coefficient was obtained. 
The use of integrated model seems to suggest the direction to follow for  improve the 
performances of deterministic models in complex area as urban one.  
 
The Ozone concentrations levels predicted by dispersion model could carry on the same trend 
with the atmospheric stability. 
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