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Abstract: The Advection-Diffusion Equation (ADE) is solved for a constant pollutant emission from a point-like source placed 
inside an unstable Atmospheric Boundary Layer (ABL). The solution is obtained adopting the novel analytical approach named 
Generalized Integral Laplace Transform Technique (GILTT). The concentration solution of the equation is expressed through an 
infinite series expansion. After setting a realistic scenario through the wind and diffusivity parameterizations the Ground Level 
Concentration (GLC) is worked out, then an explicit approximate expression is provided for it allowing an analytic simple 
expression for the position and value of the maximum. Remarks arise on the ability to express value and position of the GLC as an 
explicit function of the parameters defining the ABL scenario and the source height. 
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1. INTRODUCTION 

The analytical solution of the ADE has been performed following different approaches based on Gaussian and non-
Gaussian solutions. Gaussian solutions represent a rather easy operative tool to be handled. Non-Gaussian analytical 
solutions represent a more realistic approach to represent atmospheric diffusion. Nonetheless using non-Gaussian 
approaches, solutions are much harder to be achieved, and often for rather simple parametrization profiles only. As an 
example, Demuth (1978) provided an analytical solution with power law parametrizations with the realistic 
assumption of a bounded ABL. Such a solution involves a series expansion of the concentration in terms of the 
Bessel functions. The solution has been implemented in the KAPPA-G model (Tirabassi et al. 1986). Then Lin and 
Hildemann (1997) extended the solution of Demuth (1978) with boundary conditions suitable for simulating dry 
deposition at the ground.

In this paper, a complete analytical solution of the steady-state ADE is presented. Such a solution is based on the 
GILTT method (Wortmann et al, 2005; Moreira et.al, 2005). The ability to handle the exact analytical solution allows 
to upgrade the study of the concentration, nonetheless due to the non-explicit dependence on the set of variables 
defining the ABL scenario and the source features, an explicit analytical approximation would represent a useful 
reference when application purposes are required. 
 
2. THE GILTT SOLUTION 

The two-dimensional steady-state ADE for an emitting point-like source in a stationary ABL is: 
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where along the x direction the longitudinal diffusion term has been neglected in respect to the advection term. In the 
above equation C(x,z) represents the cross-wind integrated three-dimensional time-independent concentration. u(z) is
the horizontal mean wind and kz(z) is the vertical diffusivity, both are depending on the vertical coordinate z. The 
boundary conditions impose the flux to vanish at the extremes of the ABL (z=0,h), and the source condition is set to 
represent the point-like source placed at the height hs above the ground level, namely: 
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where Q is the constant rate of emission and (z-hs) is the Dirac function. 
 
The GILTT technique provides a solution for Equation (1) which is written in terms of a converging infinite series 
expansion (Wortmann et al., 2005; Moreira et al., 2005)
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where i(z) are the eigenfunctions solving the Sturm-Liouville equation, and )(xci are x-depending functions. Due to 

convergence the series can be truncated at a certain number N such that the rest RN(x,z) become negligible in respect 
of the partial sum. The results reported later are obtained after setting N=190, with a round off error limited below 
0.5% (Tiesi et al. 2007).

3. TURBULENT PARAMETERIZATION 

The choice of the turbulent parameterization is set to account for the dynamics processes occurring in the ABL. In the 
present paper the choice is addressed towards rather simple profiles, but still reasonably realistic. Moreover specific 
focus is devoted towards unstable regimes.
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The choice of the vertical profile for the wind u(z) is set to be following a power law (Panofsky and Dutton, 1988): 
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where u1 is the mean wind velocity at the height z1, while is an exponent related to the turbulence intensity (Irwin, 
1979). On the quantitative side, results will be provided setting =0.1, and the reference wind u1(0.01h)=3 ms-1; these
values are quite consistent with the whole range of unstable regimes pointed out by Pasquill and Smith (1984). 
 
The vertical diffusivity parameterization is led by the K-theory assumption. According to Pleim and Chang (1992), 
for an unstable ABL it is defined as:

*( ) 1z
zk z kw z
h

 (5)

where h is the height of the ABL, k is the von Karman constant which is set to 0.4, and w* is the convective scaling 
parameter related to the Monin-Obukhov length LMO and the mechanical friction parameter u* as:
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For convective scenarios LMO is limited to values such that the relationship 10
MOL
h

holds. Finally u* is determined 

through similarity assumptions (Panofsly and Dutton, 1988; Zannetti, 1990). 
 
4. GROUND LEVEL CONCENTRATION 

From the solution of the ADE the GLC is obtained after setting z=0 inside the solution C(x,z). Results will be 
reported in terms of the dimensionless GLC as follows: 
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where u is the vertically averaged wind introduced in Equation (4). The definition (7) has been introduced to 
obtain for any parameter choice lim ( ) 1GLCx

C x , according to the theoretical expectation for the two-dimensional 

ADE solution.

The scope of this paper is to provide a simple explicit expression for the maximum GLC CMGLC(xM) occurring at the 
horizontal distance xM as a function of the setting parameters for ABL scenario and source emission. Comparisons 
with data sets are reported in Moreira et al. (2006) and Buske et al. (2007). 
 
Although the sum (3) represents the exact solution of the ADE (1) except for a round-off error, the series expansion 
misses manifest dependencies on ABL parameters and source height. On the other hand the main advantage of the 
GILTT technique is to allow to step from a differential-like approach, traditionally adopted to solve the ADE 
numerically, to a matrices algebra approach after applying the generalized Laplace transform. Then the core of the 
problem leads to investigate on the behaviour of the series (3) after setting z=0, and using the property of the Sturm-
Liouville eigenfunction for which i(0)=1 regardless the index i. Despite the choice of a profile depending 
approximation, there is a practical advantage in simplicity. In doing this, empirical parameters will appear and these 
are determined by fit procedures to best reproduce the exact solution. The dimensionless GLC defined in Equation (7) 
can be approximated as follows: 
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where the tilded variables are meant to be normalized in respect to the ABL height h (e.g. hxx~ ). Due to the

negative values assumed by the Monin-Obukhov length, in the following it will be defined as the positive 
dimensionless parameter

MO MOL L h . Parameters b, c, and have been determined by fittings procedures on 

Equation (14) against the analytical solution and these are:
5 2 .17Sb h (9)

0.875.48 4.73Sc h (10) 
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It is easy to see the explicit dependency on the source height hS, the wind parameters and u1, and the convection 
scaling parameter w* which is related to the Monin-Obukhov length LMO and the friction parameter u* through the 
relationship (6).  
 
The approximating expression for CGLC(x) is based on the study of the series expansion for C(x,0). One the main
features of the approximating function is that for short distances from the source height, instabilities are easily 
managed because the exponential function suppresses any divergence affecting the algebraic function. With the 
explicit approximation for CGLC(x) it is straightforward to evaluate its x-derivative and obtain the position 
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where a maximum for the GLC occurs 
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The expression for the position xM is valid when the condition
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c
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holds.

5. RESULTS 

In Figure 1 the GLC versus x is shown for 0.01,0.05,0.1Sh (a-c), and 0.25,0.4,0.5Sh (d-f). For each source 

height two extreme Monin-Obukhov lengths are set, corresponding to 
MOL

~ = 0.001, 0.099 (empty squares and 

triangles respectively). The second value on 
MOL

~ reflects the limit imposed by the Pleim and Chang diffusivity 

introduced in Equation(5). The GILTT-based GLC are superimposed with the approximation of Equation(8) (dotted 
lines). Plots highlight that for near surface sources there is a slight mismatch between points and lines near the source 
position, where the horizontal gradient is most pronounced, logarithmic scales enhance such a discrepancy. As the 
source height increases a higher matching results, including a fair reproduction of the position where the maximum 
GLC occurs. As the emitting source height 

Sh
~ increases the approximated function slightly underestimate the 

GILTT-based maximum. Such a discrepancy reflects the fact that condition (15) is no longer satisfied. Nonetheless, 
through the whole range of source heights 5.0~0 Sh the function )(xCGLC reproduces fairly well the GILTT 

results.

Figures 2 and 3 show the maximum GLC and its position respectively. These are scanned through the source height 

Sh
~ and for several selected values of the turbulence parameter 

MOL
~ . In both figures the GILTT results (points) are 

superimposed on the explicit approximations. Figure 2 depicts the position where the maximum occurs, for low 
sources dotted GILTT results and approximated lines (Eq. (13)) show good matching regardless the turbulence 
regime. For higher sources a mismatch occurs and the discrepancy increases as convective turbulence reduces 
strength, this fact follows from the condition (15). 
 
Turbulence dependency shows that for a fixed

Sh
~ the strength of convection causes the for xM to get closer to the

source height. From the physics point of view this result agrees with the mixing effect of turbulence. A final remark 
should be made about Figure 3. Both GILTT than expression (14) confirm that the maximum GLC value depends on 
the source height, regardless the turbulence. Based on the expression (14) and parameters definitions (15)-(16), 
respectively for b, c and , the leading term for the maximum GLC results: 

 1( )MGLC M SC x h (16)

and the exponent -1 is a lower bound. These results broaden the well known result obtained with the Gaussian 
approach for an unbounded ABL.
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Figure 1. The GLC is plot versus x for several source heights. 

 

Figure 2. Plot of Mx versus 
Sh . Points refer to the GILTT results, dotted lines refer to Equation (13). 

 

Figure 3. Plot of
MGLCC versus 

Sh . Points refer to the GILTT results, dotted lines refer to Equation (14). 
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6. CONCLUSIONS 

The results shown in this paper have been addressed to highlight the possibility to express the GLC due to an emitting 
point-like source in a steady convective ABL, through a simple analytical expression. Such a function is determined 
after analysing the behaviour of the series expansion provided by the GILTT and whose predictions ability have been 
extensively demonstrated in the literature when applied to several experimental data sets.  Despite the simplifications 
driven by focusing on the only unstable ABL regimes, the analysis allows to understand to a high extent the form of 
the ground level concentration. 
 
The main progresses to be highlighted are that for a function defined as Eq.(8), within the ABL setting choice, the 
maximum GLC is only depending on source height, regardless the the Monin-Obukhov length. On the other hand, 
turbulence can still affect the position where the maximum GLC occurs. Such a result is also confirmed by the 
GILTT solution. A further remarkable point regards the result that for sources placed above the ABL middle level no 
maxima occurs as the limit become an upper bound, and the existence of a non-zero limit is one of the main 
properties of the two-dimensional ADE. 
 
On the operative point of view, the expression (8) and its related features are useful as an additional tool for 
environmental management as well as emergency responses.  
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