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Abstract: Air quality inside the urban canopy layer (UCL) is important because here is where people live and a significant part of
the emissions are located. In this way, the modeling of UCL is also important. Different factors such as the increase of urban
population and the improvement of computational power, has produced an increasing interest on urban mesoscale modeling since
mid 1990s. However, the modeling of urban boundary layer is difficult because it is influenced by the complex morphology of a city
(buildings, cars, gardens) with different mechanical and thermal/radiative properties. In addition, the domain of mesoscale models
has a horizontal extension of several tens of kilometers (the whole city and its surrounding area) and, for computational reasons, it is
not possible to solve explicitly the flow around buildings. Therefore, urban parameterizations are necessary for high resolution
mesoscale simulations. On the other hand, Computational Fluid Dynamics (CFD) models can solve explicitly the flow around
buildings but their simulation domains cannot cover the whole city. In this work, focused on mechanical effects produced by
buildings, CFD simulations and the horizontal spatial average of the different flow properties are used to assess the performance of
an urban parameterization implemented on a mesoscale model and find its strengths and weaknesses. Horizontal spatial average of
the CFD results around the buildings are made in order to compare with similar mesoscale variables corresponding to a column of
computational cells over a urban zone with the same characteristics as the CFD configuration. In this case, the city is represented by
an array of cubes.
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1. INTRODUCTION

The impact of the city on the urban wind simulated by a mesoscale model can be considerable. These models use
parameterization to simulate the effect of urban zones. In this way, the objective of this study is to evaluate the
performance of the urban parameterization implemented on a mesoscale model using results of microscale model
(CFD model). The CFD models use better resolution and solve the wind around building explicitly. Hence horizontal
spatial average of CFD results are compared with the results of the mesoscale simulation using the urban
parameterization.

2. CASE CONFIGURATION

In this study, the city is represented by a staggered array of cubes (Fig. 1). The packing density is characterised by the
non-dimensional ratios Arand A,,. defined in equation (1) and (2).
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where A, Wand L are the dimensions of the obstacles. In this case, the obstacles are cubes and 2 = W = L. In the

configuration studied S, =S, =4 (Fig. 1). Hence, A,= 4,=0.25.

The staggered array of cubes (Fig. 1) is simulated using a CFD model and a 1D version of a mesoscale model with an
urban parameterization described in the next sections.

Figure 1. Plan view of the array of cubes studied.
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3. CFD SIMULATIONS

CFD simulation is performed using the CFD model FLUENT. The simulations are based on the steady state Reynolds
Averaged Navier-Stokes (RANS) equations and the standard &-¢ turbulence model. The domain height is 44, where A
is the height of the cubes. The domain is shown in Figure 2. Symmetric boundary conditions are imposed in the
spanwise direction. Periodic boundary conditions are imposed in the streamwise direction to simulate an infinite array
(Fig. 1), and the flow is driven by a pressure gradient equal to pu/4h, where u, = 0.45 ms”. A uniform Cartesian grid
is used, with each cube being resolved by 16 grid points in each direction (i.e. resolution is Ax = Ay = Az = h/16).
More information concerning CFD simulation is shown in Santiago, J.L. et al. (2008).
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Figure 2. Plan view and vertical view of the CFD simulation domain.

4. MESOSCALE SIMULATIONS

The mesoscale simulations are performed using a 1D version of the Finite Volume Model (FVM) (Clapier, A. et al.,
1996) with the urban parameterization described by Martilli, A. et al. (2002). In this model, above the ground, the
vertical fluxes due to turbulent transport, are computed using the K-theory approach,

wa=-K, éiA (3)
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where A is the mean part and a is the turbulent part of a variable. In order to calculate the diffusion coefficient, K, a
k-/turbulent closure based on Bougeault, P. and P. Lacarrere (1989) is used. The diffusion coefficient is computed as
follows

K.=C,ITKE"? (4)
where C} is constant (=0.4), /; is a length scale of turbulent kinetic energy and 7KFE'is the turbulent kinetic energy.

In addition, other length scale (Z,) is defined in the dissipation term of the turbulent kinetic energy equation.

This study focuses on the “dynamical” part (impact on the wind field and turbulence). The thermal part is not
accounted for (neutral atmosphere, no heat fluxes from the buildings and ground). Based on an analysis of the CFD
results, the length scales are modified, and parameterized with the following expressions,

I, =a-max(z—D,h—D) (3)

I, =p-max(z—D,h—D) (6)
where a, f#and D are model parameters. The values used, derived from the analysis of the CFD results are & = 1.0,
B=10.47. Dis related to the displacement height of the wind velocity profile and depends on the packing density. For

this case (staggered configuration with A,= 4,= 0.25) D= 0.86, as it was computed from the wind profile obtained in
the CFD simulation.

Another important issue is the drag force. This parameterization treats the urban area as a porous medium modelled
in terms of a distributed drag force. The exchange of momentum on building walls due to pressure and viscous drag
forces is parameterised as,

U, -U, (7
where (), is the vertical surface building density (facing the wind) at level n, U, is the wind speed orthogonal to street
direction at level 7 and Cy,is the sectional drag coefficient. In most of the urban parameterizations (and also in this
one) Cy, is set as a constant value (in this parameterization, 0.4). However, it is well known that this parameter
depends on zand on the array packing density and layout. In this study, the importance of the value chosen for Cy,,
is shown. In addition, tests are shown with another parameterization of the drag force.

DragTerm, =C, -C

drag

In this case, the mesoscale model is run in 1D mode, e. g. the domain is a vertical column of computational cells over
an urban zone with the same characteristics as the CFD configuration (i.e. one cell in the mesoscale domain
corresponds to a large number of cells located at horizontal plane in the microscale domain) (Figure 3). The flow is
also driven by an horizontal pressure gradient.
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Figure 3. Mesoscale simulation domain.

5. AVERAGING TECHNIQUE

In atmospheric modelling over urban environment, it is impossible, for computational reasons, to have a domain large
enough to contain the whole city and its surrounding areas and to have a resolution high enough to solve explicitly all
the buildings of the city. For this reason, the accuracy of the urban parameterization used to account the effect of the
buildings on the spatially averaged (over the grid cell volume of the mesoscale models) variables plays an important
role in the modelling process. In this way, CFD models are important tools for this objective. They provide results
with high enough spatial resolution to compute accurate values of the average variables (Martilli, A. and J.L.
Santiago, 2007). As described above, the horizontal dimensions of the domain used are very different for mesoscale
and mircroscale simulations. In order to solve the effect of building explicitly, the number of cell in the horizontal
directions are 64 (x-direction) x 32 (y-direction), while the mesoscale domain is only a vertical column of cells (i.e.
only one cell in horizontal directions).

Using the domains described in the previous section, the spatial averages made over CFD volumes are representative
of a grid cell of a mesoscale model (usually of the order of few kilometres or several hundreds meters). In this case,
the CFD model provides time-(or ensemble-) averaged values (indicated by an overbar) and the spatial averaged
values can be seen as space averages of the time- (or ensemble-) averaged fields. The spatial average of a variable
can be defined as,

1
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In this work, the horizontal spatial averages are made over thin slices at different heights (Fig. 4). By comparing the
results from two models, the performance of the urban parameterization of the mesoscale model can be analysed. The
variables averaged from the CFD results are streamwise velocity (<U>), turbulent kinetic energy (<TKE>), Reynolds
stress (<y'w'>) and they are compared with the corresponding ones from the mesoscale model.

Figure 4. Diagram of the horizontal spatial averaged.

In the averaging of the RANS equations, appears the so-called dispersive stress defined in equation (9).
uw, = (< U > —uy X< W —v_ui,-) &)

It is related to the transport due to time-averaged structures smaller than the size of the averaging volume. More
details concerning dispersive stress can be found in Martilli, A. and J.L. Santiago (2007). This process is not usually
incorporated in the urban parameterizations, and it can be important in some situations. In this study, this process is
calculated from CFD results and the values are added to the mesoscale simulation.

6. RESULTS

Vertical profiles of the average properties computed from the CFD-RANS simulation are compared with the vertical
profiles obtained from mesoscale simulations using the urban parameterization with different modifications. Five
mesoscale simulations have been performed. The differences among them are:
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Simulation 1: The urban parameterization is used with the standard value of the Cy,, = 0.4. The problem is that this
value depends on the configuration and packing density of the array and for a given configuration also changes with
z, but it is considered constant in the parameterizations (Red curve in Fig. 5, 6, 7).

Simulation 2: Same as 1 but using the value of the Cy,, averaged inside the urban canopy obtained in the CFD-RANS
simulations (Ce = 52.5). The problem in this case is that Cyy, is not constant with height taken very large values
close to the ground (U is almost 0 close to the ground) (Green curve).

Simulation 3: Same as 1 but changing the value of the Cy,, for other value (Cyegun= 1.78). This Ceguiy is computed
making two consideration. Firstly it must be constant with height, and secondly the drag force integrated in the whole
urban canopy using Cieqi, must be correctly computed (see equation 10). This value depends on the configuration
and packing density of the array and is calculated from CFD-RANS simulation results (Blue curve).

1 ¢n _ _ 100 — _ (10)

o Cone(2:2) <U (2 4) > <U(z.2,)>dz = Cpppui (4, );jo <U(z.2,)>|<U(z.2,) >ld=
Simulation 4: Same as 3 but with the addition in the momentum equation of a vertical profile of the dispersive stress
computed with the results of the RANS simulation (Cyan curve).

Simulation 5: Same as 3 but changing the C, for Cyyo, that takes into account the TKE and DKE (dispersive kinetic
energy) and it is relatively constant with the height. More information about Cp,,,, can be found in Martilli, A. and
J.L. Santiago (2007) and Santiago et al. (2008). The DKE is computed with the results of the RANS simulation and
added to the urban parameterization.. In this case Cyy,oq= 0.64(Purple curve).

Vertical profiles of U, TKE and shear stress obtained from the five mesoscale simulations and the variables averaged
from the RANS results are shown in Figures 5, 6 and 7. The Uprofiles of simulations 3, 4 and 5 are similar above the
canopy. In the bottom part of the canopy, there are some differences. A smoother increase of velocity (more similar
to the RANS results) is observed when the dispersive stress is taken into account. However, the simulations 1 and 2
show behaviours far away from the RANS velocity profile. In the simulation 1, the drag force is underpredicted,
hence the wind speed is overestimated. The opposite case happens in the simulation 2. This fact shows the
importance to use a suitable value of the C,, or other suitable parameterization for the drag force in the momentum
equations. Concerning the 7KF and the shear stress there are not high differences among the simulations, especially
the shear stress is well predicted. 7KE is underpredicted in the bottom part of the canopy and the height of its
maximum is slight underpredicted in comparison with the RANS simulation.
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Figure 5. Vertical profile of the normalised streamwise velocity (g7, ) for the microscale simulation and mesoscale simulations.

7. CONCLUSIONS

These simulations have shown the importance of drag parameterization and the value of the Cyy,, that it is usually
considered as a constant in the urban parameterizations. In addition, the effect of the dispersive stress inside the
canopy has been observed.

In future works, other packing densities and other configurations will be studied in order to find suitable values of the
sectional drag coefficients and parameterise other variables such as dispersive stress.
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Figure 6. Same as Figure 5 but for turbulent kinetic energy normalised ( 7xf /,,2)-
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Figure 7. Same as Figure 5 but for shear stress normalised (;;77,//4,2)-
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