Evaluation and Inter-Comparison of Open Road Line Source Models currently in use in the Nordic Countries

Janne Berger¹, Sam-Erik Walker¹, **Bruce Denby**¹, Ruwim Berkowicz², Per Løfstrøm², Matthias Ketzel², Jari Härkönen³, Juha Nikmo³, Ari Karppinen³

> ¹Norwegian Institute for Air Research (NILU) ²National Environmental Research Institute (NERI) ³Finnish Meteorological Institute (FMI)

This study focuses on the inter-comparison between 4 open road line source (ORLS) models

Presentation of the models and datasets

Results of the inter-comparison with focus on normalised concentrations

Some main conclusions

	HIWAY 2 (NILU)	OML-Highway (NERI)	CAR-FMI (FMI)	WORM (NILU)	
Model type	Slender plume, Gaussian steady state				
Lagrangian time scales, T _L	-	Implicit, dependent on met. conditions	Unstable cond.: T_L =300 sec, stable cond.: T_L =30 sec	T _L =300 sec	
Integration method	Numerical, Richardson extrapolation	Crosswind: analytical; along-wind: numerical	Analytical (Luhar and Patil, 1989)	Numerical, Gaussian quadrature	
Traffic produced turbulence (TPT)	Semi-empirical: based on Petersen (1980)	Empirical: exponential decay of TPT as function of distance from road	Semi-empirical: based on Petersen (1980)	Semi-empirical: based on Petersen (1980)	

	HIWAY 2 (NILU)	OML-Highway (NERI)	CAR-FMI (FMI)	WORM (NILU)		
Model type	$\sigma_{z0} = 3.57 - 0.53U_{c}$					
Lagrangian time scales, T ₁ $\sigma_{y_0} = 2\sigma_{z_0}$ $\tau_L = 300$ sec $\sigma_{z_1} = \sigma_{z_1} + \mu_z = T(1 - exp(-t/T))$						
Integration method	Richardson extrapolation	analytical; along-wind: numerical	Analytical (Luhar and Patil, 1989)	Gaussian quadrature		
Traffic produced turbulence (TPT)	Semi-empirical: based on Petersen (1980)	Empirical: exponential decay of TPT as function of distance from road	Semi-empirical: based on Petersen (1980)	Semi-empirical based on Petersen (1980)		

Data from measurement campaigns in Norway, Denmark and Finland have been applied to the models

Period: 1 January – 15 April 2002 Period: 16 September –Period: 3 October – 3115 December 2003October 1995

At all sites...

✓ 2 – 3 monitors measuring NO_x at different distances from the road

One background station

🗸 Meteorology mast

Traffic counts

✓ For this presentation, we only consider the station situated \sim 50 m from the road

Harmo 12, October 2008

Handling and selection of the datasets

We look at concentrations normalised with emissions (Qnormalised) in order to compare the dispersion parts of the models

Emission normalisation removes the influence of the high emission/ high traffic volume cases

To avoid uncertainty in the emissions, 300 vehicles per hour is used as a lower limit for the normalisations

Also look at the ratio of modelled and observed concentrations

NO_x has been used for the evaluation because:

... it is measured at all sites

... the emissions of NO_x are best quantified

... it is not affected by chemical reactions at this scale

Comparison of non-normalised correlation, R²

Comparison of non-normalised correlation, R²

Comparison of Q-normalised correlation, R²

Comparison of non-normalised relative bias: *RB* = (*M*-*O*)/*O*

Comparison of non-normalised relative bias: *RB* = (*M*-*O*)/*O*

Comparison of Q-normalised relative bias

The Q-normalised relative biases are not constant with distance from the road

CAR-FMI: Does not disperse quickly enough (Lagrangian time scale too short)

Danish data: Models disperse too quickly, except CAR-FMI

Ratio of modelled to observed concentrations versus wind speed

4 models and 2 datasets

Harmo 12, October 2008

Conclusions...

Normalising the concentrations with emissions leads to a decrease in the correlation. There is significant correlation with emissions

The reduction in the relative bias, when normalising with emissions, is due to an overestimation of the initial dispersion at lower traffic volumes and lower emission values. The initial model dispersion is too large for lower traffic volumes

Large scatter and overpredictions are evident for lower wind speeds, and differences between the datasets are evident for higher wind speeds. OML performed best in this regard. Initial dispersion is not well modelled by the other models

The relative biases vary with distance from the road. For CAR-FMI too short Lagrangian time scale Difference in datasets not easily explained

Recommendations...

OML's parameterisation (or a similar formulation) of TPT should be implemented in ORLS models in the future, but the dependence on traffic volume should be improved for low volumes.

Reassessment of the Lagrangian time scales used in ORLS models.

Model intercomparisons should use more than one observational dataset.

Do not underestimate the difficulties or complexities of carrying out intercomparison studies.

