

Comparison of the dispersion model in RODOS-LX & MM5-V3.7-FLEXPART(V6.2) A case study for the NPP of Almaraz

Delia Arnold¹, Arturo Vargas¹, Milagros Montero², Alla Dvorzhak² and Petra Seibert³

¹Institute of Energy Technologies, Technical University of Catalonia, Barcelona, Spain ²Research Center for Energy, Environment and Technology, CIEMAT, Madrid, Spain ³Institute of Meteorology, University of Natural Resources and Applied Life Sciences Vienna, Austria

index

- introduction-motivation
- description and set-up
 - site and release
 - RODOS-LX
 - MM5V3.7-FLEXPART(V6.2)
- results and discussion
- conclusions and outlook

ntroduction

In case of a radioactive release a good early response and efficient management is needed.

RODOS -> real-time management of nuclear emergencies (currently under revision and improvement within EURANOS)

The combination of high-resolution mesoscale meteorological modeling + atmospheric Lagrangian particle dispersion models may be advisable in places with complex orography, such as river valleys and seashore sites

(where NPP are located!)

increasing computer performance <

ntroduction

does it make a significant difference to use a Lagrangian particle dispersion model instead of the RODOS dispersion module as it is implemented in Spain by the CIEMAT and CSN?

Set-up and intercomparison study between RODOS-LX and MM5-V3.4-FLEXPART(V6.2)

s ite and release

Almaraz NPP:

- Located in inner Iberian Peninsula at the end of Arrocampo reservoir (Tajo river)
- Complex topography -> river valley flanked by mountains

Meteo basic features:

- Dominant westerly flows -> chanelling through the valley expected
- Possible thermally driven mesoscale circulations

Release

2-hour ¹³⁷Cs 9.45·10¹⁵ Bq at 40 m above ground beginning at 12:00 UTC -10th May 2007

RODOS-LX

 Real-time On-line De-cisiOn Support system for nuclear emergency management -> a comprehensive module-based system for assessing and evaluating the consequences of a nuclear accident at all scales including the effect of the possible countermeasures (www.rodos.fzk.de/rodos.html)

inte : GOBIERNO MINISTERIO DE CIENCIA EINOVACIÓN

RODOS-LX

 Real-time On-line De-cisiOn Support system for nuclear emergency management -> a comprehensive module-based system for assessing and evaluating the consequences of a nuclear accident at all scales including the effect of the possible countermeasures (www.rodos.fzk.de/rodos.html)

atm dispersion module

RODOS-LX

MATCH -> long range

ATSTEP -> simple elongated puff model

RIMPUFF -> lagrangian puff diffusion model

meteorological fields:

- real-time measurements
- pre-calculated numerical weather forecasts

RODOS-LX

- Set-up of our case scenario
 - Meteo from HIRLAM (ECMWF lateral BC) provided by the Spanish National Institute of Meteorology (INM) ->hourly meteo fields with a forecasted length of 36 hours.

160x160 grid cells with a grid size of 0.1deg pre-processed by the Local 15 vertical levels

Scale Pre-processor LSP

- RIMPUFF:
 - dynamic grid 4 domains down to 1km
 - hourly output
 - output: integrated gridded

Nest	RODOS-LX (RIMPUFF)			
	Number of cells	Grid size (km)	Domain size (km)	
1	24	1	24	
2	36	2	72	
3	30	6	120	
4	21	8	168	

concentration, deposition and values at some receptors

 FLEXPART(V6.2) -> is a Lagrangian particle dispersion model which simulates the transport, diffusion, dry and wet deposition and radioactive decay of point, line, area or volume sources

(http://transport.nilu.no/flexpart)

FLEXPART newest versions

- ECMWF
- GFS
- WRF
- MM5-V3.7

 FLEXPART(V6.2) -> is a Lagrangian particle dispersion model which simulates the transport, diffusion, dry and wet deposition and radioactive decay of point, line, area or volume sources

(http://transport.nilu.no/flexpart)

FLEXPART newest versions

- Set-up of our case scenario
 - Meteo from MM5-V3.7

5 domains down to 1km

35 vertical levels

Nest	MM5-V3.7			
	Number of cells	Grid size (km)	Vertical levels	
1	37x37	1	35	
2	64x64	3	35	
3	121x121	9	35	
4	151x151	27	35	
5	169x169	81	35	

fed by 6-hourly GFS data with 12-hours forecasted length

- Set-up of our case scenario
 - FLEXPART (V6.2)
 - 1 domains with 1km horizontal resolution
 - 6 vertical levels (lowest at 25 m a.g.l)
 - 10-minute output

Number of particles released	3.106	
Total mass/activity released with the particles	9.45·10 ¹⁵ Bq	
Height above ground level	from 40 to 40.5 m a.g.l.	
Output interval	10 min	
Outgrid dimensions	225 x 225 x 6	
Horizontal resolution	1 km	
Height of the first vertical level	25 m	
Minimum mixing height	10 m	
Length of the simulation	1 day	

 output: integrated gridded concentration, deposition and values at some receptors

results & discussion

meteorological modeling

- south-westerly flows appear in both models.
- HIRLAM is rather homogeneous!
- MM5 reproduce better orographic influences!

results & discussion

dispersion modeling

1-day integrated ¹³⁷Cs air concentration (Bq·s·m-3) with RODOS-LX (left) and MM5 - FLEXPART (right)

- main transport direction and spreading within the valley are similar.
- FLEXPART simulates a more complex plume and orographic features are better followed.
- highest concentration plume-center is longer in RODOS.

16

results & discussion

Cel. Number	1293	2434	2451
LON/LAT	(-5.2603/39.9045)	(-4.9370/40.0282)	(-4.7781/40.1814)
RODOS-LX	80.6	86.8	5.0
MM5-V3.7-FLEXPART(V6.2)	33.3	16.5	13.7

- receptors at the center of the plume give higher concentrations in RODOS.
- according to FLEXPART an area in the SE of the NPP would be affected while not in RODOS.

△○ Met

results & discussion

¹³⁷Cs deposition (Bq·m-2) with RODOS-LX (left) and MM5 - FLEXPART (right)

 deposition fields also show differences mainly in the SE direction as well as in the complexity of the plume structure.

inte : GOBIERNO DE ESPAÑA DE CIENCIA E INNOVACIÓN

c onclusions & outlook

- Both models show similar behaviour under an advective SW situation and a diurnal release.
- However, FLEXPART shows a more complex structure which may be important under non-advective conditions.
- Point-to-point differences are up to one order of magnitude.
- Differences are not big in this case but may be important in practice.

 Further studies under other meteo conditions such as nocturnal stable situations and under well-developed mesoscale circulations are currently being done in the framework of a Spanish Researh Project