Dynamic Dispersion Modelling of Odours and Aerosols

HARMO 12 Conference

P. Lodomez1, E. Rosenthal1, J. Henseler2, W. Büscher2 and B. Diekmann1

1 Physics Institute, Bonn University
2 Inst. for agri. cult. Engineering, Bonn University
Outline

- Introduction
- Nast3D
- Structure and first tests of STAR3D
- Validation systems for STAR3D (offline/online system)
- Summary & Outlook
Transmission of dust particles from animal houses
For a time-resolved description of the particle distribution the Navier-Stokes-equations

\[
\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} + \nabla p = \frac{1}{\text{Re}} \Delta \vec{u} + \vec{g}
\]

\[\nabla \vec{u} = 0\]

are solved by Nast3D, a program developed at the Division of Scientific Computing and Numerical Simulation at the University of Bonn.

The software calculates the numerical solution for the pressure \(p \) and the velocity field \(\vec{u} \) in the centre of the cells of the 3dim. grid.
STAR3D = **Simulated Transmission of AeRosols 3D**

Based on the wind field calculated by Nast3D the motion of the aerosol particles can be expressed by the following equation:

\[
\frac{\partial x}{\partial t} = \alpha_w \cdot \vec{u} + \lambda \cdot \vec{e} + \vec{v}_{sed}
\]

- **Velocity of the particle**
- **Coupling to the wind field**
- **Diffusion of the particles**
- **Sedimentation of the particles**

STAR3D

Simulated Transmission of AeRosols 3D
STAR3D

Course of the simulation

- Modelling of the landscape, buildings, emission sources; definition of particle properties
- Calculation of dynamic fluid field (NaSt3D)
- Dynamic visualisation of aerosol distribution, analysis of data
- Calculation of particle trajectories (considering the particle's physical properties)
The software was tested in a trial scenario

- dimensions of the simulated region 100m x 100m x 25m
- grid width 1m
- barn with 5 chimneys as emission source
- a second barn as obstacle
- total simulated time period of 600s
- south westerly wind (5 m/s)
STAR3D

Animated visualisation of the result
The immission is mostly distributed in the direction of the wind (sw direction)
Tracer-Aerosol

requirements

• no environmental hazard, no danger to men and animals
• clearly traceable
• easy and efficient detection
• universally applicable (offline and online-system)
• low-cost

Pictures: GE Energy
universal particle analyzer (Offline-System)

Image processing (autofocus)

control

CCD

focusing optic

beam splitter

object slide

mirror

beam splitter

upper light source - white - uv 375nm

lower light source - white - uv 375nm
system specifications

- four light sources
 - transmitted-light, UV and white
 - reflected-light, UV and white
- transparent and non-transparent slides can be scanned
- resolution: 7 pixel = 1µm
- up to 5000 pictures per hour
- particle area and shape analysis
Offline system

Example images of tracer aerosol particles
Offline system

Aerosol particles are found automatically by a software based on the OpenCV library.

Here different particle sizes are colour-coded.
Offline system

size distribution of aerosol particles found on an object plate.

The object plate was dusted in a sedimentation chamber.
Online system

- Uv-source
- optical filter
- scatter center
- laser (red)/splitter
- UV 375nm
- TOF
- UV source
- volume flow controller
- I2U-amplifier
- detector
- filter
- AD-converter
- processor
- tracer-concentration
Summary & Outlook

• The dynamic dispersion modelling software STAR3D has been developed

• It allows the simulation of the dispersion of aerosol particles

• Two validation systems are developed to prove the results of the simulation

• The offline system works properly, the online system is currently under development

• A field survey to prove both (simulation and validation systems) is under way