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 Needs of estimating plume secondary pollutants like NO2 for regulatory 
purposes

 Estimating short term non-equilbrium concentration in a plume with chemical 
reactions

 The lagrangian particle model is particularly suitable to simulate the dispersion 
at the small scale

 Two critical point: 1) how to simulate the background concentrations (how 
many particles); 2) how to simulate chemical reactions (eulerian scheme)

 In this work we have applied the model to a case in real atmosphere evaluating 
the dispersion of pollutants released by a power plant located in the North of 
Italy

 the model  considers the photolysis of NO2 due to solar radiation

Introduction



  

 This is the prosecution of the work presented at the Harmo 11 
conference

 We have presented an application of a lagrangian particle model with 
chemical reactions to a wind tunnel experiment

 The model was able to estimate a secondary pollutant like NO2 due to 
the only oxidation reaction:

 The average concentrations were computed  in a finite volume in an 
eulerian frame using a fixed grid 

 The background O3 concentration filling the whole domain has been 
simulated by using the “deficit” method

 The model was validated against a wind tunnel data-set

Previous work
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Model Scheme 

SPRAY Eulerian
scheme

•Particles emission
•Lagrangian particle displacements
•Final concentration computation

•Temporary concentration computation on a 3D grid
•Chemical reactions performed on the same grid
•New particles mass of different species computation  

Particles positions and mass

Modified particles mass

 The Eulerian model is included inside the lagrangian model, SPRAY, 
following the simple scheme:



  

Algorithm for chemical reactions

 The set of chemical reactions considered is: 

 The chemical kinetic follows: 

 k depends on temperature and is around 0.4 ppm-1sec-1 while J depends on solar 
radiation and ranges between 0 during the night and 0.4 min-1 in the full sunlight

 the O2 concentrations are neglected because this substance is always present in 
excess and his variation in time and space does not influence the kinetic J of the 
reaction 
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Algorithm for chemical reactions

 Extension of the Chock and Winkler (1994a, 1994b) scheme
 CNO,NO2,O3(x,t0) is the concentration at  the time t0

 After the turbulent displacements we have at the time t1=t0+∆t, 
C*

NO,NO2,O3(x,t1) 
 After the chemical reactions we have CNO,NO2,O3(x,t1) from the following 
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Algorithm for chemical reactions: particles 
mass 
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 Treating background species as static fields (as O2) is not a reasonable 
approximation in the case of O3

 
 O3 concentration variation  inside the plume need to be taken into 

account (Hegg et al. 1977).

 The changes of the O3 background concentration occur only in presence 
of NOx, hence outside the plume, O3 concentration remains constant 
(well mixed condition)

 It is not useful simulating the diffusion where NO is absent

Background O3 simulation



  

 The following new scalar is introduced:
                   CO3deficit = CO3back-CO3

      where CO3back is the background homogeneous concentration value
 Every emitted particle carries a “deficit” of concentration
 The scalar CO3deficit is released only by the point source together with NO 

requiring no more particles than those of the plume 
 The actual CO3 is computed before the chemical reaction, therefore the 

chemical algorithm remains unchanged

A new scalar: “deficit”



  

Preliminary qualitative comparison
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Wind tunnel experiment: Bilger et al.1996



  

 Preliminary qualitative comparison: results

NO trend along plume centre line
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Real case application: topography and 
power plant position

+Air quality station

Power Plant

 the station is located in a rural area surrounded by a small village in the south, 
located on a hill 300 m higher than and 3 km far from the power plant 

 the power plant NOx contribution is isolated from the others, with Northerly, 
North-Eastelry wind 
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Real case application: measured 
concentration

 A period lasting 10 days, from the 12th to 22th of March 2007, has been chosen because 
several plume transits over the station, usually between 6 and 11 LST, were observed and, 
in general, clear sky and high-pressure conditions occur. 

 The background O3 concentration for the simulation has been evaluated by the 
measurements before the plume transit

Air quality station measurements -NO

-NO2

-O3



  

Real case application: numerical simulation

 The wind and turbulence fields have been built by the model system RAMS 6.0-
MIRS, using the ECMWF analysis fields as boundary conditions 

 4-d var data assimilation with the meteorological measurements of two ground 
stations located close to the power plant and the air quality gauges. 

 Three nested grids have been used with a grid spacing of 12, 4 and 1 km 
respectively; dispersion domain: inner grid is 17x17 km2 

 A variable time step for the lagrangian particles displacement; constant time step 
(20 s) for the chemical reactions.

  The cells for the concentrations computation have been set equal to 100 x 100 x 
50 m3 and constant all over the domain. 



  

Concentration field: an example
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Real case application: comparison with the 
measurements

 NO2/NOx hourly computed ratios are compared with the measurements 
considering only the diurnal significant situations in order to highlight the 
chemical scheme performances.

 Only the Northerly and North-Easterly wind have been chosen to consider only 
the episodes caused by the plume transits (16 hours) over the gauge 
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 Mean Sigma  Bias Nmse Cor Fa2 FB fas 
Measurements 0.82 0.076 0 0 1 1 0 0 

Spray 0.76 0.088 -0.059 0.0091 0.85 1.0 0.075 -0.15 
 



  

Real case application: comparison with the 
measurements

 The values of                                   should be ≥ 1 inside a plume (Hegg et al. 
1977) 

 In this case, considering that the ground station is far from the emission, values 
of Ψ ≅ 1 should be expected 

 In the figure are presented the values of ψ computed by the measured 
concentrations and with k and j used in the simulation from (IUPAC 2005 and 
Parrish et al. 1983) assuming clear sky conditions:
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where Τ is the air temperature from RAMS



  

Real case application: comparison with the 
photo-stationary equilibrium 

 Model results are also compared with the NO2/NOx of the photo-stationary 
equilibrium, where ψ=1, at the station location

 
 Following Seinfeld (1986), the NO2/NOx equilibrium values were computed 

using the NOx concentrations by Spray and the background O3 value
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 Mean Sigma  Bias Nmse Cor Fa2 FB fas 
Equilibrium 0.76 0.10 0 0 1 1 0 0 
Spray 0.76 0.088 0.0011 0.0024 0.94 1.0 -0.0014 0.16 
 



  

Conclusions

 A new lagrangian model including the main chemical reaction involving 
 NOx and O 3 has been developed

 The mean concentration are calculated on an eulerian grid
 The O3 background concentration are computed through “deficit”
 The qualitative comparison with wind tunnel data gives reasonable 

results
 Real case data comparison shows a general agreement although a slight 

NO2/NOx under estimation occurs due to the lack of cloud cover 
information  

 The model correctly predict NO2/NOx equilibrium concentration even if 
is able to reproduce non-equilibrium condition



  

 SPRAY simulation characteristic

• Source dimension (x,y,z): 0.01x0.03x0.03 m3; 
• NO concentration at the source :  505 p.p.m.;
• Background O3 concentration:   1 p.p.m.;
• Reaction rate k:  0.44 (s p.p.m.)-1, j=30 min-1 ;
• Time step:  0.1 s;
• Number of emitted particles every time step: 1000 for NO ;
• Boundary conditions at the top and bottom boundaries: Total reflection;
• Number of iterations: 5000
• Concentration grid dimensions (DX, DY, DZ): 0.1, 0.02, 0.02 m
• Average concentrations computed between the time steps 2000 and  

5000, saving the temporary concentrations every 50 time steps



  

Lagrangian model description

 SPRAY (Ferrero and Anfossi, 1998) is a Lagrangian stochastic particle 
model for complex terrain based on three Langevin equations for the 
random velocities (Thomson, 1987): 

  The PDF is assumed to be Gaussian for u,v, and non-gaussian for w    

)()u,x()u,x( tdWbdtadu +=

, 

( )dtd uUx +=  
U is the mean wind velocity, 

dta )u,x(   
is a deterministic term depending on PE(x,u), 

)()u,x( tdWb  
 is a stochastic term 

)(tdW   
is the incremental Wiener process. 

 



  

Concentration computations

 The concentration are computed in an Eulerian Grid
 Concentration in the cell of volume VJ, is computed considering the total 

mass of the particles contained
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