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Aim of the paper

» Computational study of the interaction of continuous
plumes released from point sources with buildings

- short-range dispersion of atmospheric pollutants in built-up
areas

- Simple, isolated structures: main characteristics of flow and
dispersion

* Present case: Cylindrical obstacle ("building")

- Previously studied case: "Atmospheric dispersion in the
presence of a three-dimensional cubical obstacle: Modelling
of mean concentration and concentration fluctuations”, by
Mavroidis, Andronopoulos, Bartzis, Griffiths, Atmospheric
Environment 41 (2007), 2740-2756
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Tools, data, methods

CFD code ADREA-HF

- Mean concentrations, concentration fluctuations

* Data from field experiments

- "Field and wind tunnel investigations of plume dispersion
around single surface obstacles”, by Mavroidis, Griffiths,
Hall, Atmospheric Environment 37 (2003) 2903-2918

» Comparisons of calculated with experimental results /
model performance

+ Study of computed dispersion patterns
+ Comparisons between cylindrical and cubical obstacles
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Experimental set up: cube
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Experimental results: ammonia
concentrations
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Experimental results: ammonia
concentration fluctuations
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Ammonia concentration intermittency

Experimental results: ammonia
concentration intermittency
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Computational results: non-
dimensional mean concentration
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Computational results: non-
dimensional concentration StD
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Model evaluation: turbulence closure
schemes - k-/ (1), k-¢, k-/(2)

Non-dimensional ammonia concentration Non-dimensional ammonia concentration
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Model evaluation : turbulence closure
schemes - k-/ (1), k-¢, k-/(2)

Non-dimensiona
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Model evaluation : turbulence closure
schemes - k-/(1), k-1 (2), k-¢

Ammonia concentration fluctuation
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Model evaluation : turbulence closure
schemes - k-/(1), k-1 (2), k-¢
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Model evaluation: comparison
between cube and cylinder cases
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Model evaluation: comparison
between cube and cylinder cases
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Concentration (non-dim.)

Model evaluation: comparison
between cube and ¢
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Concentration fluctuation (c'/C)

Model evaluation: comparison
between cube and cylinder cases
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Concentration fluctuation (c'/C)

Model evaluation: comparison
between cube and cylinder cases
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Concentration (non-dim)

Model evaluation: comparison
between cube and cylinder cases
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Model evaluation: comparison
between cube and cylinder cases
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Model evaluation: comparison
between cube and cylinder cases

Downwind distance from obstacle (H) Downwind distance from obstacle (H)

12*h Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for EREL 79
Regulatory Purposes, 6 - 9/10/2008, Cavtat, Croatia



Concentration fluctuation (c'/C)

Model evaluation: comparison
between cube and cylinder cases
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Concentration Fluctuation (c'/C)

Model evaluation: comparison
between cube and cylinder cases
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Model evaluation: comparison
between cube and cylinder cases
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Summary and conclusions (1)

Computational simulations of atmospheric dispersion
experiments around isolated obstacles in the field

CFD code ADREA-HF: dispersion of positively or negatively
buoyant gases in complicated geometries

Single cylindrical obstacle normal to the mean wind direction and
two upwind sources of ammonia and propane, with the ammonia
source located at different lateral positions

Concentrations and concentration fluctuations for both gases
were calculated by the model and compared with the
experimental results

Comparisons of experimental and model results with the case of
dispersion around an isolated cubical obstacle are also presented
and discussed
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Summary and conclusions (2)

- Analysis of experimental results:

- Variation of ammonia concentrations, concentration
fluctuations and intermittency as the source is displaced
laTeraHy

Source at 0. H and 0.5 H: higher concentrations for cube
» Sharper decrease of concentration with source displacement
* Concentration peaks for source at 0.5 H (2, 3 and 5 H downwind)

» Cylinder: fluctuations increase, cube: fluctuations peak for
source at 1.5 H of f

-+ Intermittency increases with source displacement, more sharply
for cube

+ Computational results: k-1 (2 versions for cylinder)
and k-¢ turbulence closure schemes tested
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Summary and conclusions (3)

* Model performance evaluation:

- "Scatter” plots for cylinder case
- Ammonia concentrations
- k-I(1) and k-¢ similar performance, around factor-of-2

- k-I(1) more points inside the factor-of-2 range, large
overestimation for cases with large source displacement

- Ammonia concentration StD
- Most points inside the factor-of-2 range for all models
- Ammonia concentration fluctuations

- Most points inside the factor-of-2 range for all models
- k-I(2) model results show little variation
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Summary and conclusions (4)

* Model performance evaluation:
- Propane results statistics:

- "Ensemble” averages (same source position, stability conditions,
similar wind)

+ The model performance for the cube case was better than for
the cylinder case

» The ratio Calc. / Exper. for concentrations is 2 times higher and
for concentration StD is 3 times higher in the cylinder case

- Ammonia concentration variation as the source is displaced
laterally

* k-I(1) and k-& model results are similar and in general
overestimate. Some peaks are predicted, only for the cube

* k-1(2) model results are better for small source displacements
but show little variation
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Summary and conclusions (5)

* Model performance evaluation:
- Ammonia concentration fluctuation variation as the source is
displaced laterally

* Models do not predict the experimental peak for the cube for
source displaced 1.5 H off the centreline

» k-1(2) model results show very little variation

- Ammonia concentration profiles downwind

+ Experimental values are higher for the cube than for the
cylinder close to the obstacle and decrease more sharply

 k-I(1) and k-¢ results are similar and overestimate the
experimental values for source placed at 0, 0.5, 1 and 1.5 H of f
the centreline

* k-1(2) agree better for source placed at 0, 0.5, 1 H but are
worse for source placed at 1.5 and 2 H off the centreline
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Summary and conclusions (6)

* Model performance evaluation:

- Ammonia concentration fluctuations profiles downwind

* Model results peaks are "weaker” than the experimental and
occur closer to the obstacle

* For the cylinder case no peak is observed in the experimental
data for source displacement above 1 H off centreline

- k-I1(2) model results are better for smaller source
displacements, k-I(1) and k-¢ are better for larger source
displacements.

- Future work:

- More detailed analysis of the differences in results and
model performance between cubical and cylindrical obstacle
cases
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