COMBINED USE OF SPACE-BORNE OBSERVATIONS OF NO2 AND REGIONAL CTM MODELS FOR AIR QUALITY MONITORING IN NORTHERN ITALY

Petritoli A1.1, E. Palazzi1, G. Giovanelli1, W. Di Nicolantonio2, G. Ballista2, C. Carnevale3, G. Finzi3, E. Pisoni3, M. L. Volta3

1Institute of Atmospheric Science and Climate, ISAC-CNR, Italy
2Carlo Gavazzi Space at ISAC-CNR, Italy
3Department of Electronics for Automation, University of Brescia, Italy
Real time gaseous and PM forecast

Sustainable emission scenarios assessment

Monitoring
PM and gaseous pollutants (O_3, NO_2, SO_2, HCHO) monitoring

Forecast
Real time gaseous and PM forecast
• Basic idea:
 – To merge satellite data column measurement of NO$_2$ and CTM simulated column, in order to provide a consistent NO$_2$ ground level concentration map.

• Methodology:
 – Satellite data retrieved NO$_2$ column
 – CTM simulated NO$_2$ column
 – Merging of the two dataset
 – Ground level concentration map
Methodology: Satellite data

- **SCIAMACHY** (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) is a passive remote sensing spectrometer observing backscattered, reflected, transmitted or emitted radiation from the atmosphere and Earth's surface.
- The instrument flies on board **ENVISAT** which was launched on 1 March 2002.
• **SCIAMACHY** retrieved NO2 column:
 – Nadir observation of NO2 slant column using DOAS (Differential Optical Absorption Spectroscopy) technique
 – Stratospheric contribution is removed using clean air values

• Features of **SCIAMACHY** data:
 – 30x60 km²
 – Overpass time at 10:30 local time
 – Limitation due to cloud presence in the instrumental field of view
Methodology: GAMES simulation system

- **Land use Topography**
- **MM5 output**
- **Emission inventories**
- **Temporal Profiles**
- **VOC speciation Profiles**

Meterological Pre-processor
- 3D wind and temperature fields
- Turbulence and Boundary Layer parameters

TCAM
- Boundary and Initial condition
- Emission Fields

System Evaluation Tool
- Continental model output
- Initial and Boundary condition Pre-processors

Emission Model
- Emission Fields
- 3D concentration fields
Methodology: GAMES simulation system

- **GAMES** simulation features:
 - Domain: the Po Valley (640 x 480 km)
 - Spatial resolution of 10 x 10 km (64 x 48 cells)
 - Emission model: CTN-ACE Italian modelling intercomparison project
 - Meteorological model: MM5

- Merging with **SCIAMACHY**:
 - only concentrations at satellite passing hours have been used.
Methodology: merging the two data

- The NO2 tropospheric column from satellite and its error are estimated using DOAS technique.
- Similar quantities are obtained from the model by integrating the vertical profile to get the tropospheric columns (using data that match the satellite ground pixel).
- A corrected column is then calculated as a weighted average between satellite and model columns.
- The NO2 profile is properly scaled.
- The ground level concentration map is the final output.
Methodology: merging the two data
Case study application: 20th November 2004

Ground level map

GAMES

SCIAMACHY

Ground level map
Case study application: 28th January 2004

GAMES

SCIAMACHY

Ground level map
Validation of results

- Comparison with ARPA ground measurements:

<table>
<thead>
<tr>
<th>ARPA NO2 (ug/m^3)</th>
<th>Ground level TCAM NO2 (ug/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

ARPA NO2 (ug/m^3)

Ground level TCAM NO2 (ug/m^3)

GAMES ground level NO2

Final ground level NO2
Conclusions

• A method for merging SCIAMACHY with GAMES:
 – fast (suitable to be used for NRT monitoring);
 – giving good results in terms of validation of the ground level NO2 concentrations;
 – perspective use with sensors (like OMI) overcoming the spatial scale limitations of SCIAMACHY

• Considering the high maintenance costs of ground instrumentations, this synergy seems a promising way to follow for air quality monitoring.
The authors would like to thank:

- ARPA Emilia Romagna and ARPA Lombardia for providing in situ measurements;
- CETEMPS (University of L’Aquila) for the initial and boundary conditions from CHIMERE simulations.

The research has been developed in the framework of the scientific project **QUITSAT** (http://www.quitsat.it), sponsored and funded by the Italian Space Agency (ASI).