Inclusion of a turbulence
parameterisation in a diagnostic mass
consistent model driven by
a prognostic model

S. Trini Castelli, D. Anfossi and G. Belfiore

Institute of Atmospheric Sciences and Climate, National Research Council
ISAC - C.N.R.
Torino, Italy

e

)


http://www.cnr.it/

e

l

J_
@ Preiaisspheri WINDRIEMRERAT R e Tc Kb e kng £35Pdm
circulation modelSpdisrarriy ! S89RFACE FLUXES (2 D)

Bérlddafy WP, K. (/SKEWINESS/KURTOSISAM 5T 637D)

parameterisation- /545 Eﬂﬁi”’k‘léﬁ ﬁ‘é?léW"' (5985
interfacing code  Trin/ Castelli, 2000)

\ Lfagfangian-pBARETIRCLE LPQRSEEFGNS 989, Anfossi et al., 1498,
dispersion modgl , TizesriveiTRATEON e ero et al. 2001



http://www.cnr.it/

Example of a for a simulation
of the meteo fields using the prognostic code

RAMS up to 1 km resolution, 4 nested domains @

grid 1: 64 km horizontal resolution
grid 2: 16 km horizontal resolution
grid 3: 4 km horizontal resolution
grid 4: 1 km horizontal resolution

Vertical grid: vertical stretched layers, 0 -15/20000 m,
first layer 50 m depth (first level at ~25 m)

Mesoscale

Regional to
local scale
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@Regional

Simulation of the meteo fields using the diagnostic code chle

MINERVE up to ~ 100 m resolution, in subdomains
typically 10-20 km x 10-20 km size

MINERVE gets as input the hourly RAMS 3D gridded
dynamical and thermal fields and...

- interpolates the mean input fields on its 3D computational
domain

-performs and objective analysis: application of mass
conservation in every domain cell

Advantages of RAMS->MINERVE downscaling:

-possibility of including local measurements
-possibility of including more detailed topograhy data
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Wind speed [m/s]

O = N WA~

Comparison between measured and simulated wind speed - Bardonecchia 5-11/07/2004
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Wind speed [m/s]
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Comparison between measured and simulated wind speed (MINERVE) - Bardonecchia 5-11/07/2004

rrrrrrrrrrrrrrrrrrrrrrrrrrr T T T T T 1T T TTT L
Bardonecchla statlon (1353 m) +

| Bardonecchia SW point {1378 m)
- Bardonecchia NW point (1409 m) ——— -
Bardonecchia SE pomt 1402 m

B Bardonecchia NE point {1449 m)

. b -
!

L } 4
L ! "\ Moo
L . ‘]\i ,.‘\ ‘\ i \J‘W‘Jr,
T b i { P
i T < (L o 0 + . E
i it ! | | A A
+ 1 ! VL o+ b +
+ ! ! ‘+'i' \ L | ./+ P L -
'tl—L' \"\‘:4. L | o i
4 \ [+ 4 '*'V\"’\A LA &
Sl R A JM/ RO A
I‘I\le\l\n\l\IMIMTI’HIIII\I\I\I’F\\I\I\I\Iw\T \||\+|\|\|\|\|

[=l=]lalelelelelelelelelelelelelelelolelelelelolelelelelelelelelelelelele e lelelelelelelelele Lo lele o Lo lelelele Lo le]
[sl=lalalslalslslslalalslslslslslslslslslslalslslslslalslalslalalslalslalalslalalalslalslslslslslsl sl slelalalaTal=]

SO OIS OGN0 — S RO G AL O— O OGN — S O G (LI — S O SN — SR WAL —O

09/07/2004
10/07/2004 0
11/07/2004
12/07/2004

05/07/2004 O
06/07/2004 O
07/07/2004

08/07/2004 O


http://www.cnr.it/

|

For its nature, MINERVE is not designed to account for
the prognostic turbulence fields, and the Lagrangian
turbulent variables are thus calculated in SPRAY from
parameterisations defined for flat terrain (ex. Hanna, 1982).

In this work we investigate whether a proper interpolation
from the coarser-resolution prognostic 3D-gridded
turbulence fields, like diffusion coefficients, turbulent
kinetic energy and its dissipation, might be used in
complex and inhomogeneous terrain.

In this way, the shortcoming of using parameterised
turbulent fields might be overcome by coupling MINERVE
with a module, which calculates the turbulence fields on
the high-resolution diagnostic grid by interpolating from
the coarser prognostic grid.
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RAMS is run with four nested grids, where the third (G3) and the
fourth (G4) grids have respectively 1 km and 250 m resolution.

RAMS fields on G4 at 250 m are considered the 'truth’ versus which to
test other two combinations.

The G3 turbulence fields from the 1-km grid are bilinearly interpolated
on the 250-m mesh points, originating the turbulence dataset

G3 INTP to be checked as an alternative to flat-terrain
parameterisations.

A downscaling of the mean flow to 250 m with MINERVE, using in input

the 1-km resolution grid RAMS G3 fields, is done. MINERVE wind fields
at 250 m are then used to calculate the surface layer and boundary
layer parameters entering the turbulence calculation in the standard
configuration, that is applying the Hanna (1982) parameterisation

We consider three different turbulence closure schemes in RAMS......
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The MY 2.5 scheme (as in RAMS)

diffusion coefficients from the TKE equation in

1
GE_ D, IE oo K = Sel(2E) 2
dt 0z az
3 kz \/Edz
_ A _(26)% e z
Km = SmI(ZE) £ = /\1 1+k%0 lo J'\/Edz

Sm,SE  are functions depending on the set of empirical constants (A1,B1’A2’52’C) = (0.92, 16.6, 0.74,
10.1, 0.08) and on the shear and buoyancy terms (ref. to Mellor and Yamada (1974,1982)).

Closure length scales: (1, 1,12,A 5) = (A1,By, A2, B, )l

diffusion coefficients from the deformation scheme as in El-anis...

Km—horiz = Po ’Fr""')(v<min—h7(cxA X)Z{Sgﬁ]‘ with Kmln h =~ = 0. 075KA( 4/3)
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The EL_(iso)anis scheme

diffusion coefficients from the 3D TKE (E) equation:

dE _ i KEa_EJrP_g with Ke = 0 gKp
dt 0Xj ax_/

3/2 kz
K = E1/2I _ CEE [d:/: | :a zJEdz
m = Cy £ = 1+ Kz " " (JEdz
g I, J

C, C, UE empirical coefficients

diffusion coefficients from a deformation scheme

Km—horiz = Po ’7767)4Kmin—hf(cxA X)Z{Sgﬁjl with Kmin—h - 0'075KA(A X4/3)

p, air density, C_dimensionless coefficient, Ax grid spacing

S, horizontal strain rate, K, user-specified coefficient of order 1.
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The case considered

Altitudes

G4 970m

G3, 4 points:

NW 772 m
NE 598 m
SE 780 m
SW 939 m
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dedicated to COST732 Colleagues.......
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Susa

The case considered
est Italian Alpine region arounc
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Distributions of TKE for

(h < 1450 m)

RAMS EL-iso TKE distibution, h=1450m|{ — |RAMSEL-anis

RAMS M-Y TKE distribution, h=1450m
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Dashed blue: values interpolated from Grid 3
Solid orange: values calculated on Grid 4
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TKE RAMS G3ITP

Scatter diagrams of TKE vs.
(h < 1450 m)

TKE - 1445 m - 09/07/2004 01-24 GMT - MY closure TKE - 1445 m - 09/07/2004 01-24 GMT - EL ANIS 3D closure
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TKE > 10 m2s2 is ~2% of full dataset (3.172.416)
TKE > 20 m2s2 is ~0.15 % of full dataset
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Time trend of TKE for and
at three model levels -

MY 2.5 — Height = 23856 m; TKE
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Time trend of TKE for and

at three model levels -
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Time trend of TKE for
at three model levels
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Distributions of TKE ratio between
G3_INTP and G4 values (TKE < 10 m?s?)
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Turbulence intensity
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RAMS closure Friction Temperature Monin-Obukhov
scheme velocity ug scale length
2000 _ (ms?) K L (m) " h(m)
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Interpolated values of TKE from 1 km resolution grid (63_INTP) result to be
overall representative of the TKE values simulated on a 250 m grid (G4).

The spread between the two sets of TKE values, G3_INTP and G4 are probably
mainly due to the fact that the G3 points, on which the interpolation procedure
is applied, may be characterized by even significantly different altitudes

Unlikely high TKE values are produced for EL_type closures:

- at the boundaries of the domains

- at the nesting boundary

- in correspondence with changing orography

probably due to discontinuities in the flow inducing high velocity gradients,
therefore high turbulence production.

- also at heights over the boundary layer and during the night

probably generated by numerical instabilities when the turbulence quantities
assume low threshold values.

The methodology seems to be feasible, also in complex terrain and in critical
locations. A quantitative analysis versus observed data and further
investigations, also on the subsequent effects on the dispersion modelling, are
under process
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