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■ To develop a multiscale model system by 
implementing two-way coupling between a 
mesoscale and a microscale model.

■ To study the effectiveness of the new 
approach on predicting wind circulation and 
TKE production over built-up areas.
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■ Eulerian, non-hydrostatic prognostic mesoscale model.
■ Describes atmospheric transport phenomena in the local-to-

regional scale.
■ Describes the dynamics of the atmospheric boundary layer 

by solving the conservation equations for momentum, mass 
and scalar quantities as energy, water vapour and, 
optionally, turbulent kinetic energy.

■ The governing equations are solved numerically on a 
staggered grid.

■ To simplify the formulation of the boundary condition at the 
irregular lower boundary terrain following coordinates are 
used instead of Cartesian coordinates.

MEMO Mesoscale Model (1/2)
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■ Initialization of the model is performed using diagnostic 
methods: A mass-consistent initial wind field is 
formulated using an objective analysis model; scalar fields 
are initialized using appropriate interpolating techniques 

■ An one-dimensional heat conduction equation for the soil 
is also solved, in order to calculate the soil temperature 
and the heat flux into the soil.

■ Capable of performing one-way nesting with a suitable 
formulation of the lateral boundary conditions for the fine 
grid.

■ Input requirements : surface observations and sounding 
measurements (vertical profiles) for wind and temperature

MEMO Mesoscale Model (2/2)
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■ Thessaloniki 1991 Measurement Campaign
■ APSIS, The Athenian Photochemical Smog - Intercomparison 

of Simulations (EUROTRAC, 1993)
■ NAIAS, New Airport Impact Assessment Study (Greek 

Ministry of the Environment, 1995)
■ Auto-Oil Study (European Commission, 1996)
■ “Athens 2004” Air Quality Study (Athens 2004 Bit Committee, 

1997)
■ Transboundary Air Pollution
■ Recent projects: INFOS, CityDelta, MERLIN, ATREUS, 

TAGARADES episode
■ ESCOMPTE Measurement Campaign
■ Upper Rhine Valley, Heilbronn, Basel, Graz, Barcelona, 

Lisbon, Madrid, Milano, London, Cologne, Lyon, Hague
■ Outside Europe: Mexico, Colombia, Los Angeles, Tokyo

MEMO: History of applications
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■ An improved representation of the surface heat and 
moisture fluxes between the soil and the surface layer was 
introduced using a layered hydraulic and thermal soil 
model. 

■ Up-to-date land use and soil classification data are utilised 
in the hydraulic parameterisation of the soil model. 

■ An “online” coupling of the MEMO model with the 
photochemical dispersion model MARS-aero is being 
implemented, the latter incorporating an aerosol module 
being able to calculate secondary inorganic and organic 
species (ongoing)

MEMO: Recent and ongoing 
improvements
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The microscale model MIMO
■ MIMO: Reynolds Averaged Navier Stokes (RANS) CFD model.

■ Solves the Reynolds averaged conservation equations for mass, 
momentum and energy.

■ Additional transport equations for humidity, liquid water content 
and passive pollutants can be solved.

■ Reynolds stresses and turbulent fluxes of scalar quantities can be 
calculated by several linear and nonlinear turbulence models.

■ A staggered grid arrangement is used and a coordinate 
transformation is applied to allow non-equidistant mesh size in 
all three dimensions in order to achieve a high resolution near 
the ground and near obstacles.

■ Heat transfer which results into buoyant  effects on the flow 
field also approximated.
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■ Simulates the effect of the mesoscale flow on the 
microscale domain.

■ Computational domain scales: 
◆ mesoscale domain: ~100-300km
◆ microscale domain: <500m

■ Characteristic timesteps:
◆ mesoscale:   10s
◆ microscale:  ~1ms

■ The two models are running semi-independently 
(“off-line coupling”)

■ Any microscale domain can be arbitrarily 
nested.

(Kunz et al, 2000)

One-way MEMO-MIMO coupling
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 3D interpolation scheme 
for calculating microscale 
BCs from mesoscale fields

One-way MEMO-MIMO coupling
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Adjustment of the 
interpolated values 
within the surface 
layer.



AUT/
LHTEE

One-way MEMO-MIMO coupling
Application: calculation of 

wind flow over the BASF 
industrial area in 

southeastern Germany 
(Kunz et al, 2000)

■ MEMO: triply nested 
domain, 24h simulation 
period.

■ MIMO: single domain with 
dimensions 360× 400 m, four 
typical periods of day: 09:00, 
12:00, 15:00, 21:00.
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One-way MEMO-MIMO coupling
Application: calculation of 

wind flow over the BASF 
industrial area in 

southeastern Germany

■ Predicted microscale wind 
velocities in good agreement 
with measurements.

■ Slight overestimation may be 
due to partial coverage of the 
industrial area causing 
underestimation of drag 
effects.
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■ A reasonably accurate prediction of the 
microscale flow.

■ Predictions of statistically important “typical” 
microscale flow patterns (e.g. for specific hours 
of the day)

■ Can be combined with a coupled mesoscale-
street-scale dispersion model for predicting 3D 
dispersion of pollutants within streets & 
buildings.

One-way MEMO-MIMO coupling: 
successes
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One-way MEMO-MIMO coupling:
shortcomings

■ Huge spatial & temporal scale 
mismatches prohibit on-line 
coupling (MEMO would have to 
slow to a crawl).

■ The selected microscale domain 
should be representative 
(geometry, orientation, etc.) of 
the larger urban area.

■ “One-way” Cannot estimate 
the effect of the microscale 
domain on the mesoscale flow 
(e.g. the combined effect from 
100s of urban cells)
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Two-way MEMO-MIMO coupling: 
additional requirements

1. The effect of the microscale domain on the 
mesoscale flow should be also adequately 
simulated.

2. Multiple microscale domains should be 
simulated, in order to better represent the entire 
urban area.

3. A methodology should be devised, to enable 
two-way coupling over largely differing scales.
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Two-way MEMO-MIMO coupling 
using an interpolating metamodel

Three-step 
approach:

1st step: BCs 
calculated from an 
initial MEMO run 
are used for multiple 
MIMO cases off-
line.
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Two-way MEMO-MIMO coupling 
using an interpolating metamodel

Three-step 
approach:

2nd step: the 
response of each 
microscale domain 
is used as calibration 
input for an 
interpolating 
metamodel. 

(Piñeros Garcet et al, 2006)
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Two-way MEMO-MIMO coupling 
using an interpolating metamodel

Three-step 
approach:

3rd step: the 
calibrated 
metamodel is fast 
enough to be used in 
on-line coupling 
with MEMO.
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Two-way MEMO-MIMO coupling 
using an interpolating metamodel

• It is possible to 
iteratively repeat 
the three steps in 
order to more 
accurately 
simulate the 
microscale effect 
on the mesoscale 
simulation.

• Experience shows 
that gains from >2 
iterations are 
negligible. 
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■ Incorporation of 
multiple microscale 
domains

■ The effect of each 
domain is 
independent from 
the others.

Two-way MEMO-MIMO coupling: 
basic features
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■ Each mesoscale 
cell is classified 
according to 
average building 
orientation and 
height.

■ The dynamical 
“microscale 
effect” is 
parameterised for 
each urban cell 
using an 
interpolating 
metamodel.

Two-way MEMO-MIMO coupling: 
spatial sampling/classification
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■ Three or four 
periods for 
each day

■ Each period 
should 
correspond to 
a typical wind 
direction

Two-way MEMO-MIMO coupling: 
temporal sampling
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■ From MIMO 
runs: determine 
the functions 
U_out2 and 
U_out1 for 
various inflow 
conditions, street 
orientations and 
building heights.

Two-way MEMO-MIMO coupling: 
parameterising the microscale response
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 General interpolation 
scheme:

 Area-averaged 
attenuation profiles 
(velocity):

 Deflection profiles 
(direction):
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Two-way MEMO-MIMO coupling: 
parameterising the microscale response
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• N=8 synthetic 
calibration cases, 
n=60 synthetic inflow 
test cases.

• Interpolation error 
increases with 
increasing distance 
from the calibration 
conditions.

Two-way MEMO-MIMO coupling: 
parameterising the microscale response



AUT/
LHTEE

■ The effect of the microscale domain is 
introduced in the mesoscale using Newtonian 
relaxation (“observational” nudging). 

(Stauffer et al, 1990)

■ Nudging is performed on temperature, 
momentum and TKE on the 4 lower 
mesoscale layers.

Two-way MEMO-MIMO coupling:
use of Newtonian relaxation 
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Athens area: test case

Mesoscale case

Period: 8-12 May 2002
Spatial extent: The entire Attica peninsula
Nesting: Doubly nested grid

Microscale (calibration) cases

Period: 4 representative hourly 
periods during the POI 
(8-12/05/2002)

Spatial extent: 2 downtown areas in Athens
Grid setup: Structured grids (~5×106 cells)
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Athens area: mesoscale grid
Grid No of cells 

Cell 
dimensions

Total grid 
extent

Initial/Boundary 
Conditions

Coarse 50× 50× 25 2× 2 km2 100× 100 km2

From 1 sounding 
location (via University 
of Wyoming)

Fine 72× 72× 25 500× 500 m2 36× 36 km2 Obtained from the 
coarse grid
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Athens area: microscale grids

Patision St. Piraeus
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Athens area: microscale case setup
 Two representative areas of linear dimension ~500m
 Four simulated periods

1. 08/05/2002:11:00 NE winds, very unstable
2. 09/05/2002:12:00 SE winds, very unstable
3. 11/05/2002:09:00 WNW winds, unstable
4. 11/05/2002:16:00 SW wind, unstable
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Athens area: microscale simulation
Piraeus domain

• Overall deceleration of the flow within the built-up area. 
• TKE levels are reduced within narrow street canyons.
• A slight increase of TKE is observed over the large open 

area at the centre of the domain.
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Athens area: microscale simulation 
Patision domain

• Overall deceleration of the flow within the built-up area. 
• TKE levels are reduced within narrow street canyons.
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Athens area: microscale simulation

• TKE production above roof level is increased.

• The effect of urban canopy in TKE production is confined within a 
layer of thickness ~1.5 times the average building height.

• Previous numerical and physical simulations indicated enhanced 
production up to ~2 times the building height (Davidson et al, 1996; 
Hanna et al, 2002; Barmpas et al, 2005; Milliez and Carrisimo, 2007; 
Santiago et al, 2007).
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Athens area: classification of 
urban cells

• “Urban” mesoscale cells are selected based on building 
density.

• A prevailing street orientation is determined for each 
cell (left).

• Average number of building stories (floors) is obtained 
from GIS maps (right).
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Athens area: results from the 
coupled system

• The velocity difference map for the first layer (0-20m) 
(left) implies a notable reduction of about 0.5-1.0 ms-1 
over the urban area.

• A significant increase in TKE production is evident 
over the 2nd layer (20-40m).
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Athens area: results from the 
coupled system

Measurement Station at 
Patision St.

•Introduction of coupling 
systematically reduces 
calculated velocities over 
the entire simulation 
period.

•Timeseries of wind 
direction calculated with 
and without coupling do 
not reveal significant 
differences.
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Athens area: results from the 
coupled system

Measurement Station at 
Patision St.

•Wind directions 
calculated with coupling 
show a tendency to align 
with prevailing street 
direction.

•Measurements underestimate 
local streaming effects since the 
measuring station operates 4 m 
above roof level.
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Future work

■ Investigate alternative metamodelling 
formulations.

■ Application to urban areas of various 
geometrical characteristics (building density/
height, aspect ratio of street canyons).

■ Comparison with wind-tunnel measurements.
■ Validation through comparison with 

combined roof- and street-level 
measurements from urban stations.
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