TURBULENCE PARAMETERIZATION FOR DISPERSION IN URBAN AREAS

Ekaterina Batchvarova (1), Sven-Erik Gryning (2)
(1) National Institute of Meteorology and Hydrology, Sofia, Bulgaria
(2) Risø National Laboratory, Roskilde, Denmark

Outline of presentation

• The urban boundary layer structure
• Parametrisation of turbulence characteristics
• Experiments
 - The BUBBLE experiment
 - The Copenhagen experiment
 - The Sofia experiment
• Results and discussion
Surface boundary layer structure

- Consensus is slowly being reached that the roughness sublayer height is about 3-5 times the average building height.
- The implication - measurements of turbulence characteristics within the inertial sublayer can be used directly in dispersion calculations.
- Urban measurements at 3-5 times the average building height are needed?!
Crosswind and vertical fluctuations of the wind velocity

Gryning et al., 1987

\[\sigma_v^2 = 0.35 w_*^2 + (2 - z / z_i) u_*^2 \]

\[\sigma_w^2 = u_*^2 \left[1.5 \left(\frac{z}{z_i} \right)^{2/3} \left(\frac{w_*}{u_*} \right)^2 \exp \left(-2 \left(\frac{z}{z_i} \right) \right) + \left(1 + \left(\frac{z}{z_i} \right) \right) \right] \]

\[w_* = \left(\frac{g}{T} \overline{w'T'} \right)^{1/3} \]

The BUBBLE experiment

Intensive campaign June-July 2002

Turbulence measurements at about 18 and 32 m are used and Mixed layer height extracted from LIDAR backscatter signal.
Parametrised versus observed half-hourly averaged values of \(\sigma_w \) (left) and \(\sigma_v \) (right) at a height of 31.7 m (upper) and 17.9 m (lower panels) at the Sperrstrasse.

At both heights the parameterisation gave higher values than actually measured.

The agreement between parameterised and measured values improved with height for \(\sigma_v \) and remained about the same for \(\sigma_w \).

At the level of 17.9 m the parameterised values were 40% (\(\sigma_v \)) and 18% (\(\sigma_w \)) larger than the measured ones.

At 31.7 m the difference was reduced to 20% and 25% correspondingly.
The strong vertical variability of σ_v and σ_w indicates that the layer of measurements is not part of the inertial sublayer. In the inertial sublayer σ_v should be constant and σ_w slightly increasing as function of height.

The layer of measurements belongs to the roughness sublayer, where the flow has a considerable spatial and vertical variability. The transition is at 3-5 times the average building height.

This is in agreement with Feddersen (2005) based on laboratory simulation of the BUBBLE experiment.

The Sofia experiment

September-October 2003

Turbulence at 20 and 40 m
High resolution (in space and time) boundary layer radiosoundings

Parameterised versus observed half-hourly averaged values of σ_w (left panel) and σ_v (right panel) at 40 m
The agreement suggests that at 40 m the transition between the roughness sublayer and the inertial sublayer has occurred.

The mixed layer height was provided by high resolution (2 hours in time and about 10 m in height) radiosoundings performed at the same site.

The Copenhagen experiment

In winter 1979

Measurements of turbulence variances - at 115 m.

Atmospheric stability - from temperature and wind profile measurements.

The mixing height - from standard radiosoundings
Parametrised versus observed half-hourly averaged values \(\sigma_w \) of (left) and \(\sigma_v \) (right panel) at 115 m at the Gladsaxe tower.

Measurements of \(\sigma_w \) at 115 m height [ms\(^{-1}\)]

Measurements of \(\sigma_v \) at 115 m height [ms\(^{-1}\)]

Good agreement for \(\sigma_v \)
And fair for \(\sigma_w \)
Results and discussion - 1

The use of the parameterisations for the standard deviations is feasible within the urban inertial sublayer.

This is of considerable interest for dispersion modelling in the urban boundary layer, because sigma-w and sigma-v are controlling parameters for spreading of plumes in vertical and lateral directions, respectively.

Results and discussion - 2

Gryning and Batchvarova (2005) applied simple models for the lateral and vertical atmospheric dispersion for the BUBBLE and Copenhagen experiments and found an agreement of about a factor of two between model results and measurements.

Similarly, the maximum observed half-hourly tracer concentration during the BUBBLE tracer experiment on 26 June compared with the maximum of the ground level concentration at the centreline from the Gaussian plume formula within a factor of 2.
Acknowledgement

The study was supported via NATO-EV 981781;
a Swiss-Bulgarian Institutional Partnership 7IP 065650 related to COST715 and
the BULAIR project EVK2-CT-2002-80024.