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Introduction
Cities consist of complex road networks 
incorporating street canyons, 
intersections, side streets. 
Interaction of background air flows with 
complex structures affects dispersion of 
traffic related pollutants and thus roadside 
concentrations. 
Significant differences in road-side 
concentrations can occur over short 
distances within typical UK streets.
Micro-scale CFD models are being 
increasingly used to attempt to model this 
variability and to identify pollution hot 
spots.
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Issues
For operational purposes CFD models often 
employ simplified representations of 

street geometries
inflow conditions 
turbulence closure
computational grid 

Pressing need to evaluate predictions for a 
variety of geometries of relevance to different 
urban environments. 
Accurate prediction of dispersion needs 
accurate estimation of emissions in street.

Purpose of Current Study
To evaluate predictions from a coupled k-ε
flow model (Miskam v4.21, Eichorn, 1996) 
and Lagrangian particle dispersion model with 
field measurements from a site with complex 
geometries. 
Comparisons will include measurements of 
turbulent flows and concentrations of a traffic 
related tracer at field site. 
The sensitivity of the model predictions to grid 
structure and input parameters will be 
evaluated.
Look at effect of variable emissions on model 
dispersion.
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Gilly
ga

te
Bootham

Topology of field site, York, UK

Study area

G4
Mast

G3

Simultaneous in street and background 
wind speed and direction at 20Hz.
Carbon monoxide (CO) concentrations
(5-15-minute averages) - electrochemical 
sensors incorporated within Learian
streetboxes attached to lampposts.  
Bi-directional traffic flow and occupancy
(15-minute averages)  in each street using 
the Split Cycle Offset Optimisation 
Technique (SCOOT). 
Approximate street canyon aspect ratio:

Gillygate H/W = 0.75
Gillygate has high vehicle flows, with 
lengthy congested periods.
All field data shown are 15 minute averages

Field Measurements 
(Boddy et al. 2005)
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Model Domain and Grid Structure

b)

Source

full domain SCOOT sensor

Flow Model Structure
MISKAM uses a k-ε turbulence closure 
no-slip lower boundary condition 
zero vertical velocity at top of domain - 100 m
a logarithmic layer assumed between solid surface 
and nearest grid points  
logarithmic wind profile and neutral static stability 
assumed at inflow boundaries – z0 = 10 cm
sensitivity to inflow roughness length tested
domain extends 270 m in the cross-street direction 
and 400 m in the along-street direction 
base resolution 1 m, 2 m and 1 m in cross-street, 
along-street and vertical directions respectively 
sensitivity to grid resolution tested
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t.k.e. generally
underestimated by model 

model structure does not
allow for intermittency
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model captures peaks for
parallel background winds
and differences between 
windward and leeward levels

Dispersion Model
mean wind and turbulence dissipation from MISKAM 
used as inputs to Lagrangian stochastic dispersion 
model –uses well-mixed formulation (Thomson 1987) 
Reynolds stresses calculated using the Boussinesq
eddy viscosity hypothesis 
pollutant source specified as box within which 
particles initially randomly located and given random 
velocity distribution - Gaussian about mean wind 
source volume 100 m by 9 m by 1 m
50,000 particles tracked through the model domain 

NV

tQ
C i

i∑
=

Q - emission rate of the source, 

∑
i

it

N - total number of particles 
V - gridbox volume

total time all particles spent in gridbox,
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Non-dimensional concentration:

Um - background wind speed at mast 
H - canyon height 
L – canyon length 

Currently Q is assumed to be proportional to 
overall traffic flows. 

Effect of this assumption tested.

Normalisation

Q
HLCUK m=
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model overestimates 
normalised concentrations 
on leeward canyon side

and in converged flow regime
possible influence of 

intermittency and traffic 
produced turbulence

Comparison of normalised
concentrations

field data restricted to times when 
Um>2 ms-1 and traffic > 100 veh hr-1
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Model Sensitivity at G3:

Solid - base run 
Dashed - double resolution
Dotted - 50 cm inflow roughness
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Influence of traffic characteristics
K vs. θm at G3 split by traffic 

occupancy at inbound sensor:
▬□▬ occupancy ≤ 12 %,

---Δ--- 12% < occupancy ≤ 62%, 
▬○▬ occupancy > 62 %.

Influence of 
congestion on 
emissions –
measurements 
using 
instrumented 
vehicle
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Modelled emissions using micro-scale 
traffic and emissions model.
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Discussion
The k-ε flow model MISKAM is capable of providing 
reasonable representation of the mean velocity 
components in a fairly complex urban geometry. 
There is some underestimation of t.k.e. possibly due to 
the turbulence closure model used, intermittency in the 
background winds in the field, and the lack of 
representation of traffic produced turbulence.
For the model set up chosen, there was a low sensitivity 
to the grid and input parameters for most wind directions. 
A region of converged flow due to channelling down 
adjacent side streets showed higher sensitivities to model 
structure. 
Predicted normalised concentrations were most sensitive 
to the description of traffic emissions. 
In future modelling studies it will be important to represent 
the influence of congestion on both the levels and spatial 
location of emissions. 

Measured Background Flows
Frequency distribution of: 

▬▬ mean wind direction (%); ▬○▬ wind speed (ms-1).
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Positive vertical flux on 
both sides.
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level.
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Influence of spatial variability in 
emissions

Clearly in congested conditions the spatial location of 
traffic queues will affect local pollutant 
concentrations. 
The proximity of queuing traffic operating under stop-
start conditions is a key influence. 
Attempts have been made to model the spatial 
variability of traffic emissions along the link in 
Gillygate using micro-simulation traffic models with 
modal emissions factors (CMEM). 
A sensitivity study has then been performed using the 
dispersion model to assess the influence of spatially 
distributed emissions on road-side concentrations in 
Gillygate. 
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