ANALYSES OF HUMAN EXPOSURE TO URBAN AIR QUALITY IN A CHILDREN POPULATION

J.M.Garcia¹, L.M.R.Coelho¹, C.Gouveia¹, R.Cerdeira¹, C.Louro¹, T.Ferreira², M.N.Baptista²

¹Escola Superior de Tecnologia de Setúbal (ESTSetúbal), Setúbal, Portugal ²Hospital Nª. Sª. do Rosário, Serviço de Pediatria, Bar eiro, Portugal

Methods - Measurements Classrooms characterization 1st. Classroom 2nd. Classroom 164 Vol. (m³) 258 no. windows 7 6 Windows area (m2) 2 2.5 W Windows direction NW/NE Blind Blind Windows protections Floor type Wood Mosaic **Furniture** Wood Wood 2005-10-20

Meteorological and Topographic Characterization

- Meteorological data Climatic acquisition station located in Barreiro and Setúbal (average of 30 years) - supplied by the Portuguese Meteorological Institute
- Meteorological variables Wind speed and direction, temperature, humidity and atmospheric stability
- Topographical data supplied by the Portuguese Geographical Army Institute
- Roughness length matrix obtained from Cortine Lengt Cover Map provide by the Portuguese CNIG

005-10-20

Background

ANALYSES OF HUMAN EXPOSURE TO URBAN AIR QUALITY IN A CHILDR<mark>E</mark>N POPULATION

ANAL YSES OF HUMAN EXPOSURE TO URBAN AIR QUALITY IN A CHILDREN POPULATION

Meacunements from air quality monitoring background stations made by CCDR-LVT

2005-10-20

Results - Statistical Results Measure nents data separation: Weekend - Saturday to Sunday Weekday - Monday to Friday Day - 8 a.m. to 8 p.m. Night - 8 p.m. to 8 a.m. Activity Days (in the 1st classroom) Calculated parameters PM₁₀ concentration average PM₁₀ concentration median Average ratio between indoor/outdoor (I/O) Correlation between indoor and outdoor measurements

Resu	elts - S	Statist	ical R	esults]
	Average (PM ₁₀ Conc.)		Median (PM ₁₀ Conc.)		I/O ratio	Correlation
	Indoor	Outdoor	Indoor	Outdoor	average	
			1st Classro	om		
Weekend	23.26	48.12	24.42	44.12	0.55	-0.20
Weekday	22.03	47.24	17.76	46.20	0.52	0.57
Day	23.28	47.47	18.87	47.18	0.58	0.45
Night	21.47	47.52	18.87	43.29	0.49	0.49
Activity Days	25.11	51.09	19.98	51.06	0.69	0.34
			2 nd Classro	om		
Weekend	14.57	18.93	14.43	19.70	0.74	0.91
Weekday	21.94	29.24	17.21	22.06	(.80	0.63
Day	21.05	29.20	17.21	22.06	V.78	0.91
Night	19.67	27.15	14.43	19.53	0.77	0.95
						2005-10-2

Conclusions

- Indoor activities have a great influence in indoor PM generation
- Positive correlation between indoor and outdoor PM concentrations, whatever the building permeability
- 1st Classroom activity days increase I/O PM₁₀ ratio exceeding the unit => bigger influence of indoor PM sources
- In no activity days I/O is greater in 2nd Classroom => building have a greater permeability => bigger risk to this children
- 1st school is near the industrial zone => greater PM₁₀ outdoor concentration. Providing the classrooms with air concitioner avoid PM₁₀ outdoor penetration by open windows

2005-10-20

Conclasions

- Relation between children and PM₁₀ was inconclusive. It is incortant to continue this study:
 - by following a children sample with respiratory problems, not only the urgency cases
 - o continue the evaluation of indoor and outdoor PM₁₀ relation
 - study children surrounding environment
- Simulation of outdoor PM₁₀ concentration and distribution is important to study the pollutants behaviour in specific meteorological conditions:
 - o Know most affected schools and study this children population.
 - Alert the authorities when PM concentrations prediction exceed or are near the legal limits.

2005-10-20

ANALYSES OF HUMAN EXPOSURE TO URBAN AIR QUALITY IN A CHILDREN POPULATION

Acknowledgments

This study is financed by FCT (Fundação para a Ciência e Tecnologia from Portugal) and FEDER.

The authors wish to thank Comissão de Coordenação e Desenvolvimento Regional de Lisboa e Vale do Tejo (CCDR-LVT), Innituto de Metereologia (IM) e Instituto Geográfico Português (IGEO) for the information supplied.

2005-10-20

