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INTRODUCTION 
Air quality assessment and policies analysis show an increasing interest in long term 
simulations with Chemical Transport Models (CTMs). In this frame the CityDelta open model 
inter-comparison exercise (http://rea.ei.jrc.it/netshare/thunis/citydelta/) has been organized by 
the Joint Research Centre (JRC-IES) of Ispra, in collaboration with EMEP, IIASA and 
EUROTRAC, as a contribution to the modelling activities in the CAFE (Clean Air For 
Europe) Project (6th Framework Programme). The aim of CityDelta exercise was to compare 
the results of different photochemical dispersion models in order to estimate air quality 
response to local and global emissions variations. The exercise was carried out by twenty 
scientific groups working on eight European domains. Starting in 2002, the second phase of 
CityDelta (2003-2004) was focused on estimations of PM10 and PM2.5 concentrations fields, 
with a special attention devoted to the partitioning of their main inorganic components 
(nitrates, sulphates and ammonium) and to the response to emission reduction scenarios.  
 
DOMAIN AND METHODOLOGY 
The computational domain (300 x 300 km2), centred on Milan (North of Italy), includes a 
large flat area (all the central and most of the western Po Valley) surrounded by mountains 
along three sides. It is a complex test bench in which low wind speeds and intense solar 
radiation cause high ozone episodes during summer and critical PM concentration levels 
during winter. The modelling system employed for the simulations was composed by a 
common set of pre-processors for input data (emissions, boundary conditions and 
meteorological fields) and two different numerical CTM models. To perform the simulations, 
the domain has been horizontally divided into 5x5 km2 cells and vertically in 11 varying level 
ranging from 20 to 3900 m. In order to keep the results homogeneous as much as possible, the 
models shared the same input fields, derived from the same data provided by JRC to all 
participants. More details concerning the computational domain and the modelling system are 
reported on Angelino, E. et al. (2005). 
 
The chemical and transport models used for the simulations were CAMx (ENVIRON Corp., 
2004) and TCAM (Decanini, E. and M. Volta, 2003). The Comprehensive Air quality Model 
with extensions (CAMx) provides the option of using two different chemical mechanisms: 
SAPRC99 (Carter, W.P.L., 2000) and CBIV (Gery, M. et al., 1989) 1999 version, modified to 
model ozone and fine/coarse PM, using RADM (Chang, J.S. et al., 1987) mechanism for 
aqueous phase chemistry, ISORROPIA (Nenes, A. et al., 1998) for inorganic sulphate-nitrate-
ammonium chemistry, SOAP (Strader, R. et al., 1999) semi-volatile scheme for secondary 
organic aerosols. CAMx user can choose the gas-phase chemistry solver as either IEH 
(Implicit-Explicit Hybrid) (Sun, P. et al., 1994) or CMC (ENVIRON Corp., 2004), based on 
an "adaptive-hybrid" approach. TCAM is a multi-phase Eulerian 3D model. It implements 
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different chemical mechanisms based both on lumped molecule (SAPRC90, SAPRC97, 
COCOH97) and on lumped structure (CB-IV) approach. The gas phase chemistry is solved by 
the IEH algorithm, which considers separately slow and fast reacting species. The TCAM 
model includes and harmonizes an aerosol module describing aerosols by means of a fixed-
moving approach. The aerosol module is coupled with COCOH-97 and includes the most 
relevant aerosol processes: condensation and evaporation, the nucleation of H2SO4 and the 
aqueous oxidation of SO2 (Seinfeld, J.H. and S.M. Pandis, 1997). 
 
EMISSION SCENARIOS 
Emissions dataset for the base case (1999) were developed by JRC employing two different 
inventories: a local one, covering the Lombardia region with a 5x5 km2 resolution, and EMEP 
emission data following a resolution of 50x50 km2. The inventories include yearly emissions 
of SO2, NOx, VOC, CH4, CO, NH3, PM10. Profiles for temporal apportionment, speciation and 
diameter class distribution were provided by EMEP for all modelling groups. Within the 
frame of CityDelta exercise seven future scenarios have been simulated by the modelling 
groups, concerning different emission (and in a coherent way boundary conditions too) 
reduction patterns related to year 2010. The reductions were computed by IIASA as 
combinations of two main scenarios: the CLE (Current LEgislation) and the MFR (Maximum 
Feasible Reduction). This paper shows the results obtained from the two CTMs in relation to 
the base case, the CLE and the MFR scenarios (tab. 1).  
  
Table 1. Total emissions (ton/year) and reduction percentages of the emissions in scenarios. 

 Base CLE MFR 
 Emission Emission % vs. Base Emission % vs. CLE % vs. Base 
NOx 485,556 339,194 -30% 248,827 -27% -49% 
SOx 725,537 163,132 -78% 67,515 -59% -91% 
VOC 733,811 447,558 -39% 293,823 -34% -60% 
PM10 92,312 55,683 -40% 31,309 -44% -66% 
NH3 188,870 190,176 0% 122,486 -36% -35% 

 
PM10 RESULTS AND SCENARIOS IMPACT OVER SECONDARY PM 
The model results have been analysed not only in relation to the computational domain but 
also to a smaller area where the majority of the population dwells. This sub-domain covers 
approximately an area located in the Po Valley between Varese and Parma cities (fig. 1). 
 
Over both the domain and  the sub-domain, PM10 yearly means show some differences on 
absolute values and distribution in the base case and the CLE scenario (tab. 2), with TCAM 
producing almost everywhere higher average concentrations; however the two models agree 
within reasonable limits on the relative efficiency of the CLE future scenario (central column 
fig. 1, tab. 2). When MFR scenario is simulated, instead, CAMx results show a greater 
reduction both with respect to the base case and the CLE scenario than TCAM (right column 
of fig. 1, tab. 2) does. The implementation of the future scenarios seems to lead to a strong 
reduction of the areas exceeding the target value established by European and Italian law (40 
[μg/m3]), even if some areas with concentration above the proposed 2010 limit value (20 
[μg/m3]) still appear to remain. Inside the sub-domain, as expected, mean concentrations are 
higher and the effect of emission reduction is stronger in term of absolute values. On the 
contrary, on relative terms, responses are very similar and for this reason SIA analysis has 
been performed only over the whole domain. 
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Table 2. PM10 simulated concentrations (μg/m3), yearly statistics over the entire 
computational domain and the sub-domain (between parentheses). 

CAMx 
Parameter Base CLE MFR CLE - Base MFR-Base MFR-CLE 

mean 19.9 
(31.4) 

14.4 
(22.6) 

8.9 
(14.4) 

-28% 
(-28%) 

-55% 
(-54%) 

-38% 
(-36%) 

95th percentile  41.1 28.7 19.1 -30% -53% -33% 
sigma 11.6 8.2 5.5 n/a n/a n/a 

TCAM 
Parameter Base CLE MFR CLE - Base MFR-Base MFR-CLE 

mean 29.2 
(45.4) 

21.9 
(32.5) 

17.8 
(26.9) 

-25% 
(-28%) 

-39% 
(-41%) 

-19% 
(-17%) 

95th percentile  62.4 43.1 36.3 -31% -42% -16% 
sigma 17.0 11.4 9.7 n/a n/a n/a 

 
Table 3. SIA simulated concentrations (μg/m3), yearly statistics over the entire domain. 

CAMx 
Specie Base CLE MFR CLE - Base MFR-Base MFR-CLE 
Ammonium 3.1 2.6 1.6  -18%  -49%  -37%  
Nitrates 5.7  5.5  3.7  -4%  -35%  -32%  
Sulphates 4.8  2.7  1.4  -45%  -70%  -45%  

Total 13.7 10.7 6.8 -22% -50% -37% 
TCAM 

Specie Base CLE MFR CLE - Base MFR-Base MFR-CLE 
Ammonium 8.1  6.3  3.6  -22%  -55%  -43%  
Nitrates 8.0  6.3  5.5  -22% -31%  -12%  
Sulphates 4.3  1.9  1.3  -56%  -70%  -32%  

Total 20.4  14.5 10.4 -29%  -49%  -28%  
 
Table 4. Simulated speciation over the computational domain for all scenarios for SIA and 

other species. 
 Base CLE MFR 
Specie CAMx TCAM CAMx TCAM CAMx TCAM 
Ammonium 16% 28% 18% 29% 18% 20% 
Nitrates 29% 27% 38% 29% 42% 31% 
Sulphates 24% 15% 18% 9% 16% 7% 
Other species 31% 30% 26% 34% 24% 42% 

 
With respect to the Secondary Inorganic Aerosols (or SIA: sulphates, nitrates and 
ammonium), the differences between the two models widen (fig 2. tabs. 3 and 4). Both 
models agree very well on the relevance and the trends for sulphates which are clearly 
correlated with analogous reductions in SOx emissions. The same can’t be said for nitrates 
and ammonium, which show differences both in concentrations and trends in future scenarios. 
With regard to CAMx is worth noting that in CLE scenario nitrates concentration decreases of 
only 4%, even if NOx emission reduction is about 30%. As NH3 emissions are unchanged in 
CLE scenario, ammonium availability remains more or less the same, thus inducing an 
increase in aerosol nitrate in order to compensate sulphate reduction. Differently in MFR 
scenario, when also NH3 decreases, nitrates reduction is noticeable. The complex relationship 
among SIA components is highlighted also by the total reduction of ammonium. Indeed both 
models forecast a decrease of about 50% of NH4

+ concentration, descending from a reduction 
of both emissions (36 %) and nitrates and sulphates concentrations. 
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Fig 1. Left column: base case PM10 yearly means (CAMx on upper row; TCAM on bottom); 

central column: differences of PM10 yearly means between CLE scenario and base case; 
right column: differences of PM10 yearly means between MFR and CLE scenarios. The 
thick isoline shows the 40 μg/m3 target value, the dotted line the 20 μg/m3 limit value. 
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Fig 2. CAMx (upper left) and TCAM (bottom left) differences of SIA yearly means in 

secondary PM10 (μg/m3) between base case and CLE scenario. CAMx (upper right) 
and TCAM (bottom right) differences of SIA yearly means in secondary PM10 between 
CLE and MFR scenarios. 

 
The figure 2 highlights the different response of the two models in relation to the MFR 
reproduced SIA: CAMx shows higher reductions in the west part of the domain, while TCAM 
simulates a deeper scenario impact in the east part. This could be explained by the different 
model sensitivity to the ammonia emissions, not reduced in the CLE scenario (see also in tab. 
4 the deep decrease of the ammonium fraction simulated by TCAM in the MFR). Finally, in 
the base case the mass percentage of the SIA sum on total PM10 mass is quite similar for both 
models (69% CAMx vs. 70% TCAM), while in both scenarios this ratio diverges, increasing 
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with CAMx and decreasing with TCAM. This is due to a difference arising in concentration 
of other species (Primary PM and Secondary Organic Aerosol) and is probably linked to the 
different SOA mechanisms. 
 
CONCLUSIONS  
The applied CTMs show good agreement both on the base case vs. CLE scenario average 
PM10 trend and on total SIA mass over total PM10 mass in the base case. Some differences are 
yet present in concentration levels and SIA composition (notably, ammonium and nitrates 
values, whereas there’s very good agreement for sulphates share and trends). The differences 
between the two CTMs are emphasized in the MFR scenario, with the remarkable exception 
of sulphates. This may be a hint that, while aerosol sulphur chemistry is well established and 
shared, the two chemical mechanisms behave differently when nitrogen and other species 
(mostly carbon) are taken into account, especially when a strong perturbation is introduced in 
the system by means of relevant reductions of emissions and ratio between pollutants.  
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