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ABSTRACT 
In this work is presented the development of an integrated model composed by a Neural Net 
and a dispersion model. Using the concentrations predicted by an air dispersion model 
(ADMD) as input to a Neural net, we evaluated the performances of this new methodology in 
the cases of a releases from an elevated emission source using the urban data set of the 
Indianapolis field study as test case. 

 
INTRODUCTION  
The air pollution models constitute a sophisticated tools that reflects the knowledge on 
turbulent transport in the atmosphere. However, this models have not so far been able to 
reproduce satisfactorily ground level concentrations because the influence of important 
variables is not perfectly described. The results they provide are affected by a considerable 
margin of error, the most important of which is the uncertainty linked to the intrinsic 
variability of the atmosphere and to local topography. 
Most operative models for estimating the dispersion of gases and particles in the atmospheric 
boundary layer are based on the Gaussian approach. Such models cannot properly simulate 
complex non homogeneous conditions in a three-dimensional and K-models are widely used 
in the field of air pollution studies. 
In reference to the prediction of complex systems it is well known that neural networks can 
work as universal approximators of non-linear functions and, consequently, can be used in 
assessing the dynamics of such systems (to take account of the available experimental data). 
Usually, they have become a useful tool either where no precise phenomenological model is 
available or when uncertainty in input and output signals complicates the application of 
deterministic modelling as, for example, in environmental systems. 
The NN applications in atmospheric systems have been used for short term forecasting since 
the early nineties (Boznar et al., 1993), when a model was constructed to predict atmospheric 
sulphur dioxide in a polluted industrialized area of Slovenia.  Other works have reported the 
use of NN for forecasting daily maximum ozone levels as Comrie (1997) in various urban 
areas, using average daily meteorological data as input parameters. A critical review of the 
NN applications in atmospheric science has been attempted by Gardner et al. (1998) whose 
comparison among models turns out to be rather unbalanced, since each model was trained 
with different kinds of data.  
The proposed approach relies on the development of an integrated model that optimises the 
performances of each methodology (air dispersion models and NN). 
The concentrations evaluated by an air pollution model are coupled with a Neural Net (NN), 
so as to adjust the influence of important variables on dispersion models (which may produce 
systematic under- or over-prediction of measured concentrations) and, contemporaneously, to 
minimize the input neural net parameters. In particular, an optimised 3-Layer Perception with 
error-backpropagation learning rules is used to filter the air pollution concentrations evaluated 
using an operative analytical non-Gaussian model (ADMD) that takes account of the vertical 
profiles of wind, of the turbulent diffusivity. We evaluated the performances of this 
methodologies in the cases of a releases form an elevated emission source using the urban 
data set of the Indianapolis field study.  
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METHODOLOGY 
General characteristics of the ADMD model  
ADMD is an operational model that allows to study the transport and the turbulent diffusion 
of pollutants in atmosphere on it local scale and under steady conditions. The modelling 
approach is based on k-theory and using advanced operative boundary layer parameterization 
and is based on a non-Gaussian analytical solution of advection diffusion equation (Lin and 
Hildemann; 1997). This solution is an extension of the solution obtained by Yeh and Huang 
(1975) and Berlyand (1975) for the transport and the vertical diffusion and  for the Gaussian 
solution for the horizontal diffusion. Particularly, the adopted solutions accept wind and 
turbulent diffusion coefficients profiles that vary with power laws of height, so it is necessary 
to introduce a parameterization by approximating actual profiles by least square method with  
power laws. The model can simulate different scheme of multiple sources with meteorological 
conditions that vary in the time at every step each of them is treated as steady. 
 
Brief discussion on Artificial Neural (ANN) net model 
An ANN is a set of interconnected neurons that is fully described by the number of neurons, 
the interconnection architecture, the interconnection weights, and the activation and the 
transfer functions. One particular ANN architecture, especially adapted for forecasting tasks, 
is known as the multilayer perceptron (MLP) with an error-backpropagation supervised 
learning rule (Rojas, 1996). This net architecture is able to reproduce non linear models, by 
means of an accurate choice of the variables of the system and of the meaningful  patterns.  
The ANN learning, basically consists of adjusting weights in order to accomplish a given 
task.  
Typical types of learning is supervised learning, that deals with the adaptation of weights in 
order to minimise some energy or error function, usually related to a distance between the 
ANN output and some target examples. 
A learning algorithm is a method by which a network of computing units self-organizes to 
reproduce the desired model. This is done in learning algorithms by providing some examples 
of the desired input-output mapping to the network. The main correction step is performed 
iteratively until the network learns to produce the desired response.  
In order to assure that the ANN has learned the underlying information that relates input to 
output data well, it is necessary to split the available data into a learning set (Train) and a test 
set (Test). The learning set comprises the samples for training the ANN. The test set picks up 
the error function as the optimisation algorithm proceeds. As architecture we used a 3-layer 
perceptron model. The first input layer contains the input variables of the net linked with all 
relevant parameters. The second layer consists of the neurons of the hidden layer. The third 
layer is the output layer, which consists of the target of the forecasting model. 
The novelty of the proposed methodology lies in the choice of the input variables: in fact, the 
inclusion of the predicted model concentrations as input values of the network means that it 
must perform a twofold task.  The first of these is to start from a situation close to like that 
predicted by a dispersion model which already include emission and turbulence factors. The 
second is linked to the fact that models perform well under certain hypotheses, while tending 
systematically to differentiate in performance when reality falls short of the ideal situations. 
In this case, the NN functions as a filter of the model, correcting it so that it can give the best 
reproduction of the real situation.  
In the simulation using ADMD we have adopted 4 variables as input to the MLP: the mixing 
height, the Monin-Obukhov Length, the downwind distance Source-Receptor and the, most 
important, the Concentration Levels Predicted by ADMD dispersion model (CADMD). In the 
simulation, the perceptron model is made up of a 3-layer architecture with 4 neurons in the 
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input layer, 8 in the hidden layer and one output neuron (containing the concentration levels 
to be reproduced).  
The NN input parameters identify various turbulent regimes and different transport-diffusion 
scenarios where the air pollution model could present different behaviors. We used 371 
selected patterns, each determined by the four input variables at some downwind distance and 
turbulence condition, as input to MLP, representative of more reliable measurements. 
 
Validation of ADMD with the Indianapolis data set  
The model ADMD has been validate through the results of the experiments conducted in 
urban area to Indianapolis (Indiana, USA) in the months of September and October 1985. 
During these experiments a SF6 tracer has been released at the height of 83.8 meters from a 
source, situated inside the urban area of Indianapolis. The concentrations have been 
monitoring  by ground stations, from a system of 160 receptors situated on arcs to 12 different 
distances from the source: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10 and 12 Km.  
The roughness has been valued 1 m. The concentration measurements have been integrated in 
the cross wind direction.  
The table 1 shows the results coming from comparison of the concentrations observed and 
those calculated by ADMD respectively considering all the stability cases and using the 
statistical indices described by Hanna (1989).  
 
Table.1. Statistical indices related to application of ADMD  

 NMSE FA2 R FB 
ADMD 1.26 0.52 0.33 0.52 

 
By the examination of the statistic indexes, it is evident that the model ADMD presents poor 
performances in simulating  releases of pollutant in an urban area to Indianapolis. 
 
RESULTS AND DISCUSSION 
To perform the net training we have been drawn out in random way the 50% of the data 
during the training phase and the other 50% has been used for the generalization.  
Results indicates a improving of all the main statistical indices (Table 2).  
 
Table.2. Statistical indices related to application integrated model (ADMD+NN) for train and 
test phase.  

 NMSE FA2 R FB 
ADMD+NN(Train) 0.47 0.61 0.88 -0.52 
ADMD+NN(Test) 0.38 0.68 0.77 -0.41 

 
During the training a good correlation coefficient was obtained (R=0.88), while the data for 
the generalization (that are independent and different from those used for the training) give 
R=0.77. The FB indicates a low overestimate (FB=-0.41) of pollutant when we used the NN 
upstream to the dispersion model. 
So the neural net adequately reproduces the pollutant  levels, despite the system can be 
considered as complex scheme. Besides, to appraise if the input variable CADMD was 
discriminating, we have run the same net without the concentration derived by the dispersion 
model (CADMD) and we get as correlation during the generalization R=0.68 (to compare with 
R=0.77), therefore the choice of CADMD is discriminating for the quality of the net. 
As it regards the features related to the atmospheric dispersion, it is recognized that: the 
concentration have to decrease with the distance; have to reproduce for the pollution levels 
the same tendency with the atmospheric stability classes (the pollution decreases from 
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unstable to stable); the distance of the maximum concentrations increases with the stability 
classes (From A to F) when we applied the Gaussian models. 
In order to verify the above features we run again a new simulation with the selected 
ADMD+NN model. We have considered as NN input, the Monin-Obukhov length,  linked to 
the Pasquill  stability classes and three values of the mixing height (Zi=400m-1000m-2000m). 
As Gaussian models, we use a models different from ADMD (ISCST). 
For both, we have calculated the maximum pollutant levels (CMAX) and the related maximum 
distance from the emission (DMAX). The results for the Gaussian models are the following: 
 
Table 3. Value of  the maximum pollutant levels (CMAX) and the maximum distance (DMAX) as 
calculated by a short term Gaussian models (ISCST). 

1/L 
m-1 

Pasquill 
 

DMAX(ISCST) 
(m) 

RD(ISCST) 
 

CMAX(ISCST) 
(μg/m3) 

RC(ISCST) 
 

-0.0875 A 700 1.00 2.64 1.00 
-0.0389 B 1500 2.14 1.64 0.62 
-0.0081 C 2900 4.14 1.29 0.49 
0.0000 D 11300 16.14 0.58 0.22 
0.0081 E 33000 47.14 0.21 0.08 
0.0389 F 183000 261.43 0.06 0.02 

 
The ratio distance (RD) and concentration (RC) are  adimensional fraction between the 
maximum distance (D) or concentration (C) corresponding to A stability classes and all the 
others. As is evident for the Gaussian model, the pollution CMAX decreases with the stability 
classes (from A to F) and the impact distance DMAX quickly grows. Once fixed the neural 
network parameters, a simulation has been made for evaluating the calculation of the impact 
of the maximum concentration DMAX taking as reference three levels for the mixing height 
(400m-1000m and 2000m). The results for the ADMD+NN model concerning the calculation 
of the impact of the maximum concentration DMAX are shown in the table 4. 
In comparison to the Gaussian dispersion model,  the model ADMD+NN produces the same 
decrement of the pollutant relationship with the stability classes (compare RC(ISCST) and 
RC(ADMD+NN)). Further, when the mixing layer is low (400m), the concentration levels are 
taller, while the calculated levels when the mixing layer is taller (1000m-200m) are close to 
those derived from the Gaussian dispersion model. 
 
Table 4. Value of  the maximum pollutant levels (CMAX) and the maximum distance (DMAX) as 
calculated by ADMD+NN model. 
Pasquill Zi 

(m) 
DMAX(ADMD+NN) 

(Km) 
RD(ADMD+NN) CMAX(ADMD+NN) 

  (μg/m3) 
RC(ADMD+NN) 

A 400 7.031 1.00 7038.1 1.00 
B 400 6.24 0.89 7323.7 1.04 
C 400 6.635 0.94 4244 0.60 
D 400 7.031 1.00 3876.6 0.55 
E 400 7.031 1.00 3601.5 0.51 
F 400 5.052 0.72 3360.5 0.48 
A 1000 12.302 1.00 6637.4 1.00 
B 1000 6.635 0.54 5999.1 0.90 
C 1000 7.427 0.60 1839.3 0.28 
D 1000 3.073 0.25 1587.9 0.24 
E 1000 3.073 0.25 1639.2 0.25 
F 1000 3.073 0.25 2062 0.31 
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Pasquill Zi 
(m) 

DMAX(ADMD+NN) 
(Km) 

RD(ADMD+NN) CMAX(ADMD+NN) 
  (μg/m3) 

RC(ADMD+NN) 

A 2000 4.656 1.00 5713.4 1.00 
B 2000 5.052 1.09 5166.1 0.90 
C 2000 2.281 0.49 1098.9 0.19 
D 2000 1.517 0.33 1009.4 0.18 
E 2000 1.517 0.33 1058.4 0.19 
F 2000 2.001 0.43 1468 0.26 

The results obtained for the DMAX with ADMD+NN model is very interesting (see 
RD(ADMD+NN)). We find that the maximum distance simulated by the NN decreasing with 
the atmospheric stability (from A to F), in contrast with the behaviour of Gaussian model (see 
RC(ISCST)). Could be this the main reason of bath performances of Gaussian models in this 
urban case. 
 
CONCLUSIONS 
The results show good performances of this methodology when applied to the urban 
Indianapolis dataset. Further, results indicates a net improving of all the main statistical index, 
decreasing the error between the calculated values and the measured ones and we reproduce 
the same decrement, predicted by Gaussian models, of the pollutant ratio RC with the stability 
classes. By the ADMD+NN model, we obtained the ratio RD a trend in contrast with the 
Gaussian model.  
The urban situation would involve an decrease of the plume impact during stable condition in 
comparison to the simple Gaussian model. This could be explained with the effects due  to 
increase of surface drag, to wake turbulence and decreases the mean wind speed. 
After all, the ADMD model represents a theoretical reality (virtual) while the neural network, 
being trained from the reality of the data,  repairs the model toward the true reality (the 
particular urban reality).  
 
REFERENCES 
Berlyand M.Y. (1975) Contemporary problems of atmospheric diffusion and pollution of the 

atmosphere. Translated version by NERC, USEPA, Raleigh,NC, U.S.A., 1975.  
Boznar M, Lesjak M, Mlakar P., (1993). A Neural Network  based method for the short-term 

predictions of ambient SO2 concentrations in highly polluted industrial areas of 
complex terrain. Atmos. Environ., 27B (2), 221-230. 

Comrie R.S, (1997). Comparing neural network and regression models for ozone forecasting. 
Journal of the Air and Waste Management Association 47, 653-663. 

Gardner M.W, Dorling S.R., (1998). Artificial Neural Networks (the Multilayer Perceptron)- 
E Review of applications in the atmospheric sciences, Atmos. Environ., 32(14/15), 
2627-2636 

Hanna, S.R., 1989. Confidence limits for air quality models, as estimated by bootstrap and 
jackknife resampling methods. Atmospheric Environment 23, 1385-1395. 

Lin J.S. and Hildemann L.M. (1997), A generalised mathematical scheme to analytically solve 
the atmospheric diffusion equation with dry deposition, Atmos. Environ. 31, 59-71. 

Rojas R., (1996): Neural Networks: a systematic introduction, Springer-Verlag, Berlin 
Heidelberg. 

Yeh G.T. and Huang C.H (19759. Three-dimensional air pollutant modeling in the lower 
atmosphere. Bound. Layer Meteor., 9, pp. 381-390. 


