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INTRODUCTION 
In case of large-scale nuclear accidents real-time atmospheric dispersion models are an 
important tool to support decision-makers with spatial and temporal information on the 
dispersion forecast and the extent of the expected contamination. The accuracy of the real-
time calculations of spatial and temporal distributions of the air concentration, deposition and 
corresponding radiation levels is limited due to uncertainties in the applied dispersion 
algorithms, limitations in knowledge and availability of atmospheric input data, and the 
release conditions during an accident. 
 
To improve the reliability of the prognosis of the radiation exposure during an accident it is 
envisaged to use the on-line data of the National Radioactivity Monitoring Network. In a first 
step, the monitored radiation levels are related to the calculated radiation levels. Based on the 
plant status source-term estimates and a first estimate of the input parameters are deduced. 
For the next step both the results of air dispersion model calculations as well as the data of the 
monitoring network are compared using RIVM’s Model Validation Tool (Eleveld, H. and H. 
Slaper, 2002). A sensitivity and uncertainty analysis (Kok, Y.S., H. Eleveld and  C.J.W. 
Twenhöfel, 2004) identified the relevant input parameters of the air dispersion model. This is 
followed by a data assimilation technique based on RIVM’s validation tool, which is applied 
to modify the input space for the air dispersion model providing the improved reliability of 
the prognosis when compared to intermediate (already analysed) results.  
 
DATA ASSIMILATION TECHNIQUE 
Data assimilation techniques are used to obtain an optimal deterministic atmospheric 
dispersion prognosis, e.g. Robertson, L. and Langner J., (1998) and Rojas-Palma, C. et al. 
(2004). This technique is widely used in numerical weather forecasting. In short, for the 
atmospheric dispersion prognosis the transport of the calculated puffs on the grid is effected 
by the acquired dose rate measurements.  
 
We followed a dissimilar scheme, optimising the input parameters of the atmospheric 
dispersion model by using the observed data, thereby minimising the uncertainty of the model 
prediction. The match between the model results and the observed data is delivered by the 
rank value of RIVM’s Model Validation Tool, which is described in the next section. By 
fitting the input space using the rank value a better result can be expected for the atmospheric 
dispersion prognosis, see Figure 1.  
 
The minimisation procedure, BCPOL, is taken from the IMSL Math Library version 3 (Visual 
Numerics, 1997) and is suited for minimisation of non-smooth functions with simple bounds 
using a direct search complex algorithm (Gill, P.E. et al., 1981). The idea is to fit the input 
data for time step t0 to improve the prognosis for time steps t0 + N. This minimisation 
procedure was especially chosen for its robustness.  
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Figure 6. Flow chart of the data assimilation technique using RIVM’s Model Validation Tool 
and a fitting procedure of IMSL to establish an improved prognosis of the dispersion 
modelling. 
 
RIVM’S MODEL VALIDATION TOOL 
The Model Validation Tool (Eleveld, H. and H. Slaper, 2002) is a tool to validate atmospheric 
dispersion model results against observed concentrations on a time and spatial scale. It 
includes a statistical methodology that brings a surplus value by the calculation of physical 
parameters such as the distance and error-angle between the observed centre of mass and 
modelled centre of mass. In case of a mismatch in terms of the so-called ranking parameter 
between model results and experimental data, the underlying statistical parameters and 
physical parameters will reveal the origins of the differences. Ten statistical parameters are 
used and an overall ranking parameter is based on the combination of all ten parameters. The 
ranking parameter ranges from perfect agreement (value 0) to extreme disagreement (value 
100). 
 
Besides the possibilities of scoring deterministic models against measurements using the 
Model Validation Tool, it is possible to intercompare probabilistic models, Bijwaard H. and 
H. Eleveld (2002). 
 
RESULTS AND DISCUSSION 
In the absence of elevated levels on our monitoring network the Kincaid data, as distributed 
by Olesen (1994), is used to demonstrate the working of the data assimilation technique 
revealing the most favourable input parameters for the air dispersion model. The NPK-PUFF 
atmospheric dispersion model, operational as a long-range dispersion model (Verver, G.H.L. 
and F.A.A.M. De Leeuw, 1992) and recently adapted for the meso-range and short-range scale 
(Eleveld, H. 2002), has been applied for this evaluation.  
 
In Figure 2, the results are shown of the data assimilation technique using the effective 
emission height and the wind vector as adjustable parameters. Only these two parameters 
were chosen for practical reasons for this first attempt evaluating the working of the data 
assimilation technique. For both the effective emission heights and the wind vectors (at an 
altitude of 100 m) the adjustments were kept the same for all the hours at one iteration step. 
So, for the first iteration step, the effective emission height was kept at 400 m and the wind 
angle correction was kept at 0 degrees for all hours. Kincaid day 25 July 1980 was evaluated 
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as the input data and observed data for this day appeared to be inconsistent (Eleveld, H. and 
H. Slaper, 2002). One of the questions was if the minimisation routine was able to find a 
correct minimum for this particular situation. The original ranking performance showed 
extreme disagreement. Then, after some 25 iterations the ranking parameter value dropped to 
below 60, indicating a reasonable agreement. After 42 iterations, the minimisation procedure 
BCPOL stopped as one of the criteria was satisfied. 
 
The effective emission height was determined to be some 1070 m and the original input wind 
vectors were changed some 54 degrees. Validating the NPK-PUFF model in previous instance 
the effective emission height was calculated to some 700 m (Hantke T. and H. Eleveld, 2002). 
Depending on the atmospheric conditions it is of course possible that the effective emission 
height (or centre of mass of the puff) is in effect higher, due to an underestimated thermal 
plume rise of the initial stage (Beychok, M.R., 1994). Another possibility is that an incomplete 
set of parameters is optimised. 
 

In Figure 3, the results of the data assimilation are shown using a geographical information 
system. It is clear that the modelled results are significantly improved. Nevertheless, the 
calculated dispersion is rather compact compared to the observed concentrations. Therefore, 
the dispersion calculation may be improved some more if more input parameters (surface 
resistance, Lagrangian time scale, Monin-Obukhov Length, etc) were used in this data 
assimilation. At the other hand, it is of importance that the number of iterations must be 
limited in order to deliver an improved prognosis in time. By identifying the most important 
parameters optimisation with respect to computing time can be made. Kok, Y.S. et al. (2004), 
discuss an exploratory study in this direction. 

Figure 7. Results of the data assimilation technique for Kincaid day 1980-07-25, using the 
original input data at the start, the MVT tool and the fitting procedure. Only the effective 
emission height and the wind vector were adjusted. 
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Figure 8. Graphical representation of the result from the fitting procedure for Kincaid day 
1980-07-25, see also Figure 2. The crosses represent the receptor points, the filled contours 
show the interpolated observed concentrations, and the other contours are the modelled 
results of the first and last iteration.  

CONCLUSIONS 
In this paper preliminary results of our data assimilation technique are shown. The technique 
is based on RIVM’s Model Validation Tool optimising the input space, including the local 
meteorological input. A day of the Kincaid data set (25 July 1980) was chosen in the absence 
of elevated levels of our monitoring network. The specific day was selected as it showed an 
inconsistency in the input data and monitoring data. Only two input parameters were used in 
this analysis, the effective emission height and the direction of the wind vector at an altitude 
of 100 m. In the successful optimisation process, the ranking parameter of the Model 
Validation Tool decreased from 100 (extreme disagreement) to 56, indicating a reasonable 
agreement, using the data assimilation technique.  
 
In addition to the presented results, it is important that other input parameters and more data 
sets are evaluated to ensure a correct working of the presented data assimilation approach. 
Also, the improvement of the prediction for time t0+N using (incomplete) data of time t0 must 
still be demonstrated. 
 
If this approach successfully reduces the uncertainties in the prognosis in a time efficient way, 
the objective is to include the method in our operational decision support system for nuclear 
emergency management. 
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