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INTRODUCTION 
The complexity of turbulent flow is so formidable that a description of the flow characteristics 
at all points in space and time is not feasible.  Consequently, any study of turbulent flows 
(either in the form of observations or solutions of the conservation equations) is directed 
towards describing the flow properties and the evolution of mean and turbulent quantities 
(Haugen, 1973; Nieuwstadt and van Dop, 1982; Garratt, 1992).  This means that we can 
expect air quality models to hopefully agree with observations “in general” (i.e., compare 
average patterns in time and space), but we cannot expect models to match with observations 
“in particular” (i.e., at a particular point in time and space).  Thus, the basis for development 
of meaningful model evaluation metrics is to devise analyses that avoid direct comparison of 
observations with predictions paired in time and space, as this would be requiring models to 
simulate “in particular.”  In this discussion, we test a method for assessing model performance 
that compares modeling results with observations in a general sense. 
 
Previous investigations of observations of sulfate suggested there are locally contiguous 
subregions where monitoring results have similar temporal behavior (Gego et al., 2003), 
which had been detected through the use of a principal component analysis.  Previous 
investigations of performance suggest that grid-based models are most skillful in simulating 
longer-term variations in time and space, as they lack the resolution and physics to simulate 
finer-scale variations (Hogrefe et al., 2001ab).  This suggests that if we sort the observations 
and modeling results into geographical subregions and compare running averages (computed 
over a long time window), we might have a robust first-order method for assessing regional-
scale model performance that is faithful to the concept of testing a model on its ability to 
predict “in general.” 
 
DISCUSSION 
Rotated principal component analysis 
Principal component analysis (PCA) is a multivariate technique designed to facilitate 
interpretation of large data sets involving numerous mutually dependent variables. By 
summarizing the correlations (i.e., identifying the redundancies) between all variables, PCA 
allows determination of the ‘true’ dimensionality of a data set. It also allows building of a 
new data set (the principal components data set) whose dimensions reflect the true 
dimensionality of the original data set and whose variables are mutually orthogonal.  Eder 
(1989) provided insights on how to use PCA to analyze and summarize the temporal 
correlation of time series of a given air contaminant measured at numerous monitored sites.  
In Eder’s (1989) approach, a sample individual corresponds to a sampling event (date) and a 
variable is a monitoring site.  PCA used in this framework allows classification of all 
monitoring sites into a limited number of categories (or subregions), each of which 
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corresponds to a specific contaminant’s temporal evolution (specific succession of rises, falls 
and plateaus), i.e., a specific mode of variation.   
 
One may consider that the information included in the original data set can be reasonably 
described by a limited number of PCs.  The number of PCs retained is representative of the 
true dimensionality of the original data set. In our case, it also represents the number of 
‘distinct modes of variations’ or the number of clusters we wish to differentiate in the data set. 
There are several methods for deciding the number of PCs to retain, among them the “Rule 
N” method (Overland and Preisendorfer, 1982), and the Scree test (Cattell, 1966; Wilks, 
1995).   No one approach is thought superior to the others.  In this study, the number of 
clusters retained for each air pollutant and network is the number of eigenvalues greater than 
1 as in Eder (1989).  Orthogonally rotating the PCs retained so as to increase their correlation 
with the original data, a procedure often referred to as varimax (Kaiser, 1958), has been 
shown to facilitate interpretation of the principal components (Horel, 1981). We, therefore, 
chose to use it as well.  Details on the application of PCA to monitoring data can be found in 
Gego et al., (2004). 
 
Interagency Monitoring of PROtected VIsual Environment (IMPROVE) network 
Initiated in 1985, the IMPROVE network essentially aims at monitoring air quality conditions 
in Class I areas, i.e., in national parks and wilderness areas that receive special protection 
from adverse air quality impacts through the U.S. Environmental Protection Agency’s 
Prevention of Significant Deterioration (PSD) program (U.S. Environmental Protection 
Agency, 1980).  The air sampler at IMPROVE sites consists of 4 modules located 3 m above 
ground level and equipped with a device that excludes particles larger than 2.6 micrometers 
from the sampler.  Sulfate concentration is calculated by stoichiometry from the mass of 
sulfur extracted from a teflon filter and analyzed for by X-Ray fluorescence. A 24-hour 
integrated air sample is collected every three days. Measured concentrations are reported at 
ambient temperature and pressure conditions. 
 
This study utilizes the sulfate concentrations reported by IMPROVE at sites located within 
the contiguous US for 1996.  Only those sites having 85 or more out of 104 observations 
(82%) were retained for analysis.  Because PCA cannot handle missing data, missing data at a 
given site were substituted for using a temporal linear interpolation scheme. A total of 57 out 
of 72 IMPROVE sites were used in the RPCA.  From our PCA analysis of the IMPROVE 
observed sulfate concentrations values, we identified six subregions within the US having 
similar temporal behavior:  Pacific Coast states, Four-Corners states, Idaho-Wyoming- 
Montana, New England states, Kentucky-Virginia, and Central Florida, which are shown in 
Figure 1. 
 
CMAQ and REMSAD modeling results 
One-year simulation results of sulfate for the contiguous US for 1996 for two regional-scale 
models were recently made available:  Community Multi-Scale Air Quality Model (CMAQ, 
2002 release, http://www.epa.gov/asmdnerl/models3/cmaq.html) and Regional Modeling 
System for Aerosols and Deposition (REMSAD, 7.06 version, http://remsad.saintl.com/).  
Both models used the CB IV chemical mechanism, both employed 36 km horizontal grids 
with 12 vertical layers where the lowest layer was approximately 38 meters in thickness.  The 
meteorology for both models was provided by the Mesoscale Meteorological Model (MM5, 
version 2.12, http://www.mmm.ucar.edu/mm5/mm5-home.html).  The MM5 output was 
processed by the Meteorology Chemistry Interface Processor (MCIP, v4.2.0, 
http://www.cmascenter.org/modelclear.shtml#cmaq).  It was later detected that there were  



9th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 

 - 71 -

errors in MCIP in defining the winds for use by CMAQ, so the results by both modeling 
systems should be viewed with caution (see http://www.cmascenter.org/workshop/).  For our 
purposes of testing a method for assessing model performance, these 1996 simulation results 
are considered satisfactory.   
 
For the analyses to be discussed, we paired the simulated 24-hour average sulfate value whose 
grid center was nearest the IMPROVE observation site, which are only available every three 
days.  A five-week running average was applied to the predicted and observed sulfate values, 
and then averaged over all sites for each subregion to produce the illustrations displayed in 
Figure 2.  The western subregions are the top three panels, and the eastern subregions are in 
the bottom three panels.  Both models underpredict the summer increase in sulfate values in 
the Pacific Coast and Southwest states, whereas all models reproduce the temporal patterns 
reasonably well elsewhere.  Discussion of these results with the modeling team who 
performed the model simulations revealed that a “clean” annual boundary condition of 0.5 
micrograms per cubic meter was applied for sulfate.  Investigations are underway to explore 
whether the sulfate boundary condition should have a seasonal peak during the summer. 
 
CONCLUSIONS 
To explore a possible method for assessment of model performance that is faithful to the 
concept of testing a model on its ability to predict “in general”, we used the 1-year simulation 
results of sulfate for the contiguous US for 1996 for two regional-scale models:  CMAQ 
(2002 release) and REMSAD (7.06 version).  Previous investigations of observations of 
sulfate suggested there are local contiguous subregions where monitoring results have similar 
temporal behavior, and previous investigations of regional-scale modeling results suggests 
models are most skillful in simulating longer-term variations in time and space, as they lack 
the resolution and physics to simulate finer-scale variations.  Using a principle component 
analysis of the IMPROVE observed sulfate concentrations values, we identified six 
subregions within the US having similar temporal behavior.  Following the application of a 5-
week running average to the observed and modeled values, we summarized the performance 
of the models in each subregion.  Both models are seen to underpredict the summer increase 
in sulfate values in the Pacific Coast and South West states, whereas all models are 
reproducing the temporal pattern reasonably well elsewhere.  It is hypothesized that the 
“clean” boundary condition used in these simulations for sulfate contributed to the bias seen 
in the results for the western subregions.  The differences in magnitude of the sulfate values 
and differences in seasonal variations were clearly detected by the analyses performed.  
Assessing regional-scale model performance on their ability to characterize the longer-term 
variations in the time series within subregions is seen to provide valuable clues towards 
mitigating gross sources of bias and allows for a quantitative comparison of the relative 
performance of several models.    
 
DISCLAIMER 
The United States Environmental Protection Agency through its Office of Research and 
Development partially funded and collaborated in the research described here under 
Interagency Agreements (DW 13938634 and DW 13938483) with the Department of 
Commerce.  The Department of Commerce partially funded and collaborated in the research 
described here under contracts with Dr. E. Gego (EA133R-03-SE-0710), and with the State 
University of New York to Dr. C. Hogrefe (EA133R-03-SE-0650).  This paper has been 
reviewed in accordance with US EPA’s peer and administrative review policies and has been 
approved for presentation and publication. 
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Figure 1.  PCA results for the IMPROVE sulfate observations for 1996.  There are six 
subregions differentiated using different symbols, three in western US and three in eastern 
US. 
 

Figure 2. Five-week average sulfate concentration (micrograms per cubic meter) as a 
function of Julian day number for each of the subregions identified by the PCA analysis. 
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