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INTRODUCTION 
In a discussion on predictability, H. Tennekes stated that , “Because the atmosphere is a 
chaotic system in which all forecasts are divergent, particularly as far as the smaller scales of 
motion are concerned, we must insist that no forecast is complete without a preceding 
assessment of forecast skill.  In the same spirit, no observation is complete without an 
appropriately sampled estimate of the variance of the properties observed, and no model 
calculation is complete without a calculation of the variance of the calculation.”(see Hooke et 
al., 1990).  In the current paper, we provide quantitative estimates of some of the major 
sources of uncertainty in plume dispersion modeling (e.g., variance of the model predictions) 
and then provide a preliminary assessment of their effects.  The specific sources of 
uncertainty that are investigated are stochastic effects in the crosswind concentration profile, 
plume dispersion parameters, plume rise, and transport wind direction and speed. 
 
DISCUSSION 
Crosswind concentration profile variations 
The widely-used Gaussian approximation for characterizing the crosswind distribution of 
mass of a dispersing plume as it is carried downwind provides a smoothed viewed of what is 
really seen in the world.  Irwin and Lee (1996) analyzed the Prairie Grass data, as well as 
additional tracer data from the Kincaid power plant, which had a 183-m stack with a typical 
buoyant plume rise on the order of 200 m.  They concluded that the scatter in the 
concentration values about the ensemble average Gaussian lateral profile can be characterized 
for both experimental data sets as having a log-normal distribution with a geometric standard 
deviation (GeoSD) on the order of 2. 
 
The SCIPUFF model (Sykes et al., 1998) is one widely-used plume model that explicitly 
solves for the fluctuations in concentration internal to the plume as described above.  
Typically, the relative fluctuation (standard deviation divided by the mean) is simulated to be 
about 2 on the plume centerline, and is larger towards the edges of the plume. The SCIPUFF 
estimates of uncertainties are consistent with what has been independently found by the 
authors, as discussed in the previous paragraph.  Note, SCIPUFF simulates additional sources 
of uncertainty which we have not investigated (e.g., uncertainty due to mesoscale wind 
fluctuations using inputs of wind speed variance and Lagrangian mesoscale integral scale, and 
uncertainty if the plume is located far from the wind observation site).   
 
Dispersion parameter uncertainty 
Irwin (1984) calculated the bias in the dispersion parameter estimates, and observed that the 
bias varied from one site to the next, and also calculated the random errors about the 
systematic bias at each site.  To further explore these uncertainties, an analysis was conducted 
of the field experiments from 26 different sites listed and discussed in Irwin (1983).  Nine of 
these sites involved elevated releases and the other 17 sites involved near-surface releases.  
The data were divided into four (4) groups: 1) elevated vertical dispersion values (5 sites), 2) 
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elevated lateral dispersion values (4 sites), 3) near-surface vertical dispersion values (6 sites), 
and 4) near-surface lateral dispersion values (11 sites).  For each experiment within each of 
the four groups we:  1)  computed the average and geometric mean of ratio P/O, where P is 
the predicted and O is the observed dispersion, and 2)  computed the standard deviation and 
geometric standard deviation of P/O ratio values.  For the current analysis, Model 3 as 
described in Irwin (1983) was used for the predictions.  Table 1 summarizes the results 
obtained from the analysis described.  A log-normal distribution was seen to be a reasonable 
characterization for all of the random error distributions, even though a normal distribution is 
seen to be indicated at 10 experiment sites (see notations in Table 1).  We looked to see if a 
large bias in the P/O ratio correlated with larger scatter in the random errors as reflected in the 
geometric standard deviation values, but such was not seen.  We looked to see if the bias or 
geometric standard deviations in the vertical and lateral dispersion were correlated but such 
was not seen.   
 
If we assume that the random biases and random errors come from independent log-normal 
distributions, we can model the uncertainty by expressing the dispersion parameters as 
σ σy z y z y z y z

ob r, , , ,= ⋅ ⋅ , where the subscripts y and z respectively refer to the lateral and vertical 
dispersion, b and r are random bias and error factors, σ y z

o
,  is the model’s estimate of the 

dispersion, and σ y z, is the observed dispersion, including the effects of uncertainty.  We can 
use the Table 1 results to characterize the distributions of b and r.  We can characterize the 26 
biases as a log-normal distribution with a GeoSD of 1.35 (e.g., zyb , ), and we can characterize 
the 26 GeoSD values by their average, 1.51 (e.g., zyr , ,).  Note, a log-normal distribution with 
a GeoSD of 1.50 means 90 %of the values are within a factor of 2. 
 
Hanna’s (2002) informal expert elicitation concerning uncertainties in σy and σz and his 
reanalysis of Draxler’s (1984) observations of σy and σz in many field experiments confirm 
the uncertainty magnitudes suggested above.  Six developers of widely-used Gaussian 
dispersion models were asked to estimate the uncertainties, expressed as 90 % confidence 
bounds, in σy and σz.  The six experts agreed that the uncertainties in both components were 
about a factor of two to three for hourly-averaged observations. 
  
Draxler (1984) provides reviews of field observations of dispersion from many sites.  The 
figures in Draxler’s (1984) chapter were analyzed by Hanna (2002) to determine the range of 
the scatter of the points in the σy and σz plots.  For the 18 figures with relevant data, there is 
seen to be a consistent factor of about 10 (i.e., an order of magnitude) range of variation in the 
plotted points from a best-fit line across all the figures.  That is, for a given median σy or σz 
estimate (as from a best-fit line) at a given downwind distance or travel time and for a given 
stability, the observed σy or σz values cover an order of magnitude range. This corresponds to 
an uncertainty of about a factor of 3.  A range of a factor of five would encompass nearly all 
of the observations, so we recommend that “random” σy or σz values should be no more than 
a factor of five away from the median value. The probabilities of values inside the factor of 
five range can be increased by the area of the CDF curve outside of the factor of five range.  
Furthermore, as stated above, the 90% range (i.e., from the 5th to the 95th percentiles) is 
approximately a factor of two.  
 
It is seen that the independent assessments of uncertainties of σy and σz summarized in Table 
1 and by Hanna (2002) produced similar estimates of uncertainty (about ± factor of two); 
however, since both studies used similar field data sets, this result is expected. 
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Plume rise uncertainty 
Analysis of Figures 4 and 5 of Erbrink (1994), suggest the P/O plume rise ratio values can be 
characterized as having a log-normal distribution with a GeoSD of 2.10.  Use of vertical 
profiles of the wind and temperature at 30 meter intervals reduces the uncertainty in the P/O 
plume rise ratios as characterized by a GeoSD from 2.10 to 1.48.  Table 5.1 of Briggs (1969) 
list 22 plume rise estimates from 17 sites.  Analysis of these estimates suggest that the 
distribution of P/O plume rise ratios can be characterized by log-normal distribution with a 
GeoSD of 1.34.  Combining the results from Erbrink (1994) and Briggs (1969) suggest the 
uncertainty in the plume rise can be characterized as a random bias that follows a log-normal 
distribution with a GeoSD of order 1.34, and the random error that follows a log-normal 
distribution with a GeoSD of order 2.0. 
 
Transport wind direction and speed uncertainty 
There is indirect evidence through the comparison of observations with predictions from 
mesoscale meteorological modeling of what the uncertainties might be in characterizing the 
transport wind direction and speed.  Hanna and Yang (2001) compared winds predicted for a 
nine-day period by the RAMS and MM5 meteorological models for the 12-km OTAG grid in 
the eastern US.  For these comparisons, the root mean squared error (rmse) was less than 1.9 
m/s for wind speed and on the order of 60 degrees for wind direction.  They also compared 
MM5 predictions for a 4-day period for the 4-km grid in the central California SARMAP 
domain where four dimensional data assimilation (FDDA) was employed.  For these 
comparisons, the rmse was 2.5 m/s for the wind speed and 66 degrees for the wind direction.   
 
These results are consistent with comparison of MM5 10-m predictions made for the 
contiguous US for 2001 with observations from 785 sites for the period June 21 – September 
21, 2001, where the average rmse over all 785 sites was determined to be 1.7 m/s for wind 
speed and 64 degrees for the wind direction.  From analysis of the MM5 comparisons for 
2001, it was determined that for the wind speed standard deviation of the site to site biases 
was 0.74 m/s and the average over the 785 sites of the standard deviations of the residuals was 
1.5 m/s.  For the wind direction, the standard deviation of the site to site biases was 16 
degrees and the average of the standard deviations of the residuals was 61 degrees. 
 
For the following list of experiments there was sufficient information to directly compare the 
transport wind direction (as indicated by a wind direction sensor near the release) with the 
actual transport directions (as indicated by the location of the center of mass of the tracer at 
each downwind arc):  Project Prairie Grass, Green Glow, Hanford 30, Hanford 64, Hanford 
67.  The Hanford 64 involved releases at 26 m, and the Hanford 67 involved releases at 2 m, 
26 m and 56 m.  The wind sensor transport direction uncertainties could be characterized as a 
random overall bias for all releases during an experiment which was superimposed upon a 
random error that varied from one release to the next.  The random bias followed a normal 
distribution with a standard deviation of about 4 degrees, and the random error followed a 
normal distribution with a standard deviation of about 2 degrees.  These uncertainties in 
transport direction are substantially less for the tracer experiments than were determined in 
the MM5 comparisons.  So we might be tempted to conclude that the uncertainties determined 
for these tracer experiments represents a lower bound on the wind speed and transport 
uncertainties, whereas the RAMS and MM5 comparisons provide evidence that much larger 
uncertainties are possible.  Since these tracer experiments generally involved releases near the 
ground over simple terrain and on-site research-grade wind data were available, then these 
would be expected to represent minima.  When the Kincaid tracer data are subjected to the 
same analysis, then a standard deviation of 20 degrees is found.  However, the Kincaid plume 
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was from a tall stack and plume rise was substantial, so the wind observation from a tower at 
a height of about 100 m was not representative of the wind at a height of several hundred 
meters, where the plume was located. 
 
Combining the results from the studies discussed above suggest the uncertainty in the wind 
speed and wind directions can be envisioned as having a random bias that varies from one site 
to the next, and a random error at each site about the site bias.  The random bias in wind speed 
is envisioned as following a normal distribution with a standard deviation of order 0.5 m/s, 
and the random bias in the wind direction is envisioned as following a normal distribution 
with a standard deviation of order 10 degrees.  The random error in wind speed and direction 
can be simulated as errors in the North-South and East-West components which are 
envisioned to follow a normal distribution with a standard deviation of order 1.0 m/s for each 
component.   
 
Propagation of uncertainties 
Monte Carlo (MC) simulations were conducted to assess the sensitivity of the maximum 
concentration to random biases and errors.  Using the Gaussian plume formula for the 
centerline concentration downwind from an elevated point source, with no mixing depth (ie 
unbounded above), we assumed the following values:  median wind speed = 3 m/s, median 

yσ = zσ = 150 m, median plume rise = 25 m, and stack height = 25 m.  The random bias and 
random error were specified in the dispersion parameters, plume rise and wind speed as 
outlined in the preceding paragraphs (but we forced the wind direction to never change).  
One-hundred “years” having 8760 hours each were simulated, and the resulting MC 
concentrations were divided by the median concentration (ie, concentration obtained with no 
errors).  The results are summarized in Table 2, and the "averaging" times are determined as 
block averages (ie, they do not overlap).  The resulting uncertainty distribution in the 
maximum concentration was seen to follow a log-normal distribution which can be 
summarized by the geometric standard deviation.  This synthetic numerical experiment allows 
us to view in particular the impact of random bias and random errors as averaging time 
increases in a world where the dispersive conditions (on average) never change.   
 
CONCLUSIONS 
It is concluded that normal error distributions can be used to characterize wind speed and 
wind direction uncertainties, whereas log-normal error distributions can be used for the rest of 
the sources of uncertainty.  The total uncertainty in the model inputs and formulations is 
viewed as a combination of random biases and random errors.  The random errors (about 
some bias) have the greatest impact on hourly concentration values, while random bias errors 
have the greatest impact on the long-term concentration values.  Left for future investigation 
is the problem of developing a means for propagating uncertainty in the winds that develops 
dynamically consistent wind fields. 
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Table 1.  Summary of comparison of Model 3 ( Irwin, 1983) predictions of vertical and lateral
dispersion parameters with field data from 26 sites.  GeoSD is the geometric standard
deviation. 
Elevated Lateral Dispersion Sites 
Experiment Site        Number Bias GeoSD 
Hanford(67)-56m    68 1.00 1.52  
Hanford(67)-26m 210 0.81 1.51  
NRTS                96 0.92 1.23  
Karlsruhe               39 0.61 2.37*  
Hanford    57 0.90 1.19  
Suffield  104 1.08 1.43  

Elevated Vertical Dispersion Sites 
Experiment Site      Number Bias GeoSD  
Agesta          24 1.09 1.39  
Karlsruhe         87 1.03 2.04*  
Porton            9 0.93 1.46  
Hanford         19 1.46 1.49  
NRTS          96 1.49 1.36* 

Near-Surface Lateral Dispersion Sites  
Experiment Site       Number Bias GeoSD 
Mt. Iron           161 2.07 1.92*  
NRTS-B  44 0.91 1.24  
NRTS-A             84 1.24 1.39  
Hanford 30           117 0.90 1.40*  
Green Glow            86 0.82 1.51  
Prairie Grass          315 1.12 1.68*  
Dry Gulch          266 1.72 1.62  
Ocean Breeze          172 1.78 1.44*  
Round Hill II            30 1.38 1.29  
Round Hill I            72 1.13 1.41  
Handord(67)-2m      104 1.00 1.49*  

Near-Surface Vertical Dispersion Sites  
Experiment Sites        Number Bias
 GeoSD 
NRTS-B  42 0.57 1.90  
NRTS-A             46 1.26 2.32  
Prairie Grass           203 1.24 1.63*  
Round Hill I             52 1.03 1.40* 
 
Values with * denote cases where a Normal 
distribution best characterizes the random 
errors, but for which, we also found a log-
normal distribution fits nearly as well. 

 
Table 2.  The geometric standard deviation in maximum surface concentration values derived
from Monte Carlo simulation of 100 “years” with constant average dispersion and wind
conditions.  The speed was 3 m/s, stack height was 25 m, plume rise was 25 m, vertical and
lateral dispersion was 150 m, and no uncertainties were allowed in the wind direction. 
Averaging Time Random Errors Random Biases Random Errors and Biases

1-hr 2.59 2.07 3.36 
3-hr 1.80 1.79 2.04 
24-hr 1.26 1.62 1.56 

30-days 1.05 1.59 1.46 
Annual 1.02 1.59 1.46 
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