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INTRODUCTION 
The accuracy of a modeling system in analyzing the consequences of either continuous or 
accidental releases in the atmosphere is important especially when adverse health effects are 
expected to be found. Stationary models are often used in consequences analysis studies. 
Unfortunately such models can only be applied in stationary and homogeneus conditions, 
which are often far to be true and consequently the results are poor. An improvements on 
model accuracy can be obtained using non conventional approaches where dispersion models 
are coupled with statistical ones. Among the statistical models the neural network (NN) have 
shown to better deal with non linear problems coming in different fields of study such as 
prediction of air pollution concentration levels (Gardner et al., 1999), atmospheric turbulence 
parametrization (Agnello et al., 2001) and so on. Recently  Pelliccioni et al (Pelliccioni et al., 
2003) applied this kind of statistical approach to the results obtained by a gaussian dispersion 
model to investigate the ability of a NN in improving the accuracy on reproduction of the 
observed ground concentrations. A net improvents on accuracy of the coupled dispersion-NN 
model system were observed. This kind of study was conducted using the Kincaid validation 
data set (Bowne and Londergan, 1981), collected in flat terrain conditions. When the 
pollutants are dispersed in complex areas the reconstruction of the actual ground 
concentrations becomes more complicated. In fact on such areas the land/sea breezes and 
topography effetcts give rise to complex circulation patterns which have a great influence on 
local meteorology and in turns on pollutants dispersion. On such conditions a non stationary 
modeling system can achieve better accuracy than that obtained using stationary models such 
as the gaussian ones. Among the non stationary model the Lagrangian particle models have 
demonstrated to better deals with non stationary non homogeneous conditions like those 
described above. Although better results are obtained with this kind of model, the accuracy is 
sometimes poor and it  needs to be improved. In order to get this aim a Lagrangian particle 
model was coupled with a neural network. This model system was then applied to reconstruct 
the ground concentrations produced by a cement plant located in a complex area and to 
investigate the possibilities to improve the accuracy on reproduction of the observed 
concentrations.  
 
INVESTIGATION AREA 
The studied area is located in central Italy, approximately 30 km far from Rome. The south-
west side of the domain is rather flat and includes a military airport, while in the north and 
east parts hills mountains up to 1200 m are present. Guidonia is the most important town in 
this area with a population of approximately 30000 inhabitants.  
Different emission sources are present. Vehicular traffic is an important emission source in 
the town and its suburbs. A large cement plant is located out of the city of Guidonia, about 1 
km north from the boundary of the urban area. The plant facilities cover an extension of 3x2 
km2 including extraction activities, components preprocessing and final burnings. The main 
emissions consists of NOX and SO2 pollutants from a 54 m height stack which is connected 
with a large burning system. 
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FIELD CAMPAIGN DESCRIPTION 
A field campaign has been conducted to feed the models with real data and to validate the 
modeling system. Three monitoring stations were used for  this study: the first is close to the 
cement plant (UNI hereafter) and located 800 m south of the stack. The second monitoring 
station is placed downtown the Guidonia city (GUID hereafter) handled by the local 
environmental protection agency. Both UNI and GUID stations collect hourly chemical and 
meteorological data. The last station is composed by a Mobile Meteorological Laboratory 
(MML) and by a Mobile Chemical Laboratory (MCL-ISP). The MML was located 300 m east 
of the stack. Its location was chosen in order to measure meteorological parameters close to 
the emission point. The MML calculates averaged values (10 minutes time period) of the 
main standard meteorological data and turbulence parameters. Wind and turbulence vertical 
profiles were also collected at this station. The MCL-ISP, equipped to measure air pollutants 
concentrations, was located 600 m north-east of the stack, in a rural area at the foot of the 
Montecelio hill. 
 
THE DISPERSION MODEL AND THE NEURAL NETWORK 
The dispersion modeling system used in this study is composed by three models: the 
MINERVE meteorological model, the SURFPRO turbulence model and the SPRAY 
Lagrangian particles dispersion model. The Lagrangian particle model SPRAY 3.0 (Tinarelli 
et al., 1994) was used to reproduce the concentration fields produced by the buoyant plumes 
emitted by the cement plant stack. SPRAY is a 3-D model able to simulate air pollution 
dispersion in the atmosphere in non homogenous and non stationary conditions. The model 
deals with a number of computational (fictitious) particles which are emitted and dispersed 
taking into account the three basic dispersion components: the transport due to the mean fluid 
velocity; the random turbulent fluctuation of wind components; the molecular diffusion. 
Minerve is a mass-consistent meteorological model (Geai, 1987 ) which uses a diagnostic 
approach to reconstruct 3D wind and temperature fileds using the provided meteorological 
data.  A two steps procedure is conducted by the model: a first guess interpolation scheme and 
a divergence adjustements. 
As Neural Netowork architecture, we have considered a 3 layers perceptron structure with a 
hidden layer, one of input and one of output layer.  
 
MODELS SETUP 
A 10x10 km2 domain, centered on the plant stack, was considered to cover all possible plume 
impacts on the surrounding areas and all relevant towns. The Minerve-Spray domain has been 
horizontally divided  into 41 x 41 grid cells with 250 m resolution and vertically splitted from 
the ground level to the top, set to 1500 m, using layers of variable thickness. 
The period of November 2nd-5th 2001 was used for test simulations. It can be considered as a 
typical local atmospheric circulation in autumn. Furthermore, significant NOx peaks were 
observed in this period which could be ascribed to the stack emissions.  All available upper air 
and ground based meteorological stations have been provided as input to the meteorological 
model MINERVE to calculate 3D wind and temperature fields at 10 minutes time resolution. 
Emissions factors and its parameters were measured at the stack level These parameters 
allowed to provide to the model the real stack emission factors and their time modulation in 
connection to the actual plant working conditions. NOx , SO2 and CO were considered as 
simulated pollutants. Further details can be found in Gariazzo et al. (Gariazzo et al., 2004) 
 
In order to find the best architecture NN which reproduce to the best the experimental data, 
we have tested three different neural nets, each associate to the number of neurons of the 
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hidden layer (corresponding to the choice of 5, 8 and 10 neurons). As any NN needs to be 
trained before to be applied for reproduction of the target parameter, we evaluated the 
performance of the neural net taking into account different percent of training input data from 
40% up to 100% of the total data set.  
The choice of the training parameters of the neural net is another key factor for the success of 
these techniques. Six variables were selected as input. Three meteorological parameters, the  
friction velocity, the vertical gradient of temperature and the mean temperature, were 
considered, all measured by the MML. Others two variables (the geometrical coordinates of 
the monitoring stations X(t) and Y(t)) have been selected with the introduction of a new 
system of coordinates linked with the wind direction and the stack-monitoring stations 
distance to provide NN the information related with downwind-upwind conditions and impact 
distances. As these geometrical coordinates are calculated starting from the wind directions, 
they are time dependent. As a result the point of coordinates X(t),Y(t) moves on a 
circonference of radius egual to the stack-station distance (736.2m, 698.9 m and 1859.3 m for 
the stations of the ISP, of the UNI and of the GUID respectively) according to the wind 
direction. The different anemological conditions that are measured during the simulation 
correspond to different upwind distances (Y>0) and downwind (Y < 0) for the three stations.  
The last input training variable was the NOx  concentration values foreseen by the Lagrangian 
model (so called the Concentration Levels Predicted by Dispersion Model or CLPDM) at the 
three considered monitoring stations. This variable is very important because it contains the 
information related with the atmospheric dispersion of pollutants. To evaluate the importance 
of the choice of this variable, a further simulation has been performed without its inclusion in 
the NN input parameters (without CLPDM). 
As NN target output parameter the NOx ground concentrations at the three monitoring stations 
was chosen. This pollutants was selected due to its aboundance on emission and for the 
presence of significant peaks on the observed ground concentrations. 
 
RESULTS AND DISCUSSION 
The NN conducts its training phase starting from the input dataset patterns. A total number of 
325 patterns coming from all monotoring stations were used for such a phase.  
The NN produces some negative values of target concentrations, which don't evidently have 
any physical meaning. Their number depend on the NN architecture (number of hidden 
neurons). The best architecture was searched by minimizing the number of negative 
concentration produced. The relative percentage of their presence respect to the total dataset 
has been used as an indication of the simulation quality. The correlation factor R has also 
been considered as a quality index. The results are shown in the table 1.  
 
Table 1. Main results of Spray-NN model and NN alone (without Nox(Spray)). 
8 Hidden Neurons Percent of data during the training phase
Spray-NN 40% 50% 60% 70% 80% 85% 90% 95% 100%
Correlation ( R) 0.44 0.57 0.61 0.72 0.77 0.77 0.80 0.81 0.86
Percent of Negative Concentrations (%) 11.4 10.2 8.0 3.7 6.2 4.0 2.8 2.8 0.9
NN alone 40% 50% 60% 70% 80% 85% 90% 95% 100%
Correlation ( R) 0.55 0.59 0.68 0.70 0.65 0.75 0.76 0.76 0.76
Percent of Negative Concentrations (%) 8.0 7.1 4.3 3.4 1.5 2.2 2.8 3.1 3.1  

 
In general, the best result was obtained with 8 neurons of the hidden layer and using 100% of 
the data (R=0.86 and 0.9% of negative values). Nevertheless, some good results was also 
given beginning from 70% of the data (R=0.72 and 3.7% of negative values).  
The simulation, besides, demonstrate that the use of the NOx Spray derived as input variable 
is very important for the performance of the net. In fact, as shown in table 1, the R values are 
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lower (0.76 versus 0.85 using 100% of training data and 8 hidden neurons) in comparison 
with the results obtained using the NOx Spray derived data. Short-term results produced by 
Spray were deeper analyzed by Gariazzo et al. (Gariazzo, 2004). They showed Spray 
sometimes missed the observed peaks due to other emission sources (eg. traffic) not included 
in that study or to an incorrect reproduction of the actual wind field which in turn affects the 
simulated peak shape that exhibits a temporal shift when compared with the observed one. 
Episodic incorrect peak reproduction are also outlined in this study although daily 
concentration are in a good agreement with the observed one 
Figure 1 shows the Spray prediced Nox concentrations, the 8 hidden neurons 100% training 
data NN derived NOx concentrations and the related observed NOx concentrations at the three 
selected monitoring stations. In the figure 2 the Spray-NN Vs observed values scatter plot 
results are given. The net succeeds in adjusting the Spray results operating on two main 
factors. The first factor attempt to adjust the peaks of the maximum plume impact (to 
certainly be ascribed to the cement factory) and to fix the temporal shift produced by Spray.  
The second factor operates on situation where observed values are mainly produced by other 
emissions sources different from the stack, which was the only one considered in the Spray 
simulations. This has particular relevance in the Guidonia monitoring station, where traffic 
emissions are, at rush hours, the main contributors to the measured pollutants concentrations. 
 It is important to be noticed that the introduction of the new spatial coordinates in the NN 
input variables, allows to extend the spatial estimation of ground concentrations, taking into 
account the location of the selected station and its distance from the impacting sources as well 
as the dispersion conditions as provided by the dispersion model.   
In conclusion, the comparison of simulation results with the observations collected at selected 
monitoring stations have shown good agreement for NOx. To net improvement in the overall 
models accuracy is observed when the Neural network was applied downstream to the particle 
model. 
 
REFERENCES 
Agnello P., Gariazzo C., Pelliccioni A., 2001: “Modeling PBL turbulence parameters by 

neural network to improve meteo station”; 7th International Conference on 
Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 
Belgirate 28-31 May 2001. 

Bowne N.E. and Lodergan R.J., 1981: Overview, result and conclusions for the EPRI plume 
model validation and development project: plane site. EPRI report EA-3074. 

Gardner M.W, Dorling S.R., 1999: Neural network modelling and prediction of hourly Nox 
and NO concentrations in an urban area in London, Atmos. Environ., 33(5), 709-719. 

Gariazzo C., Pelliccioni A., Bogliolo M. P., Scalisi G., 2004: ‘Evaluation of a Lagrangian 
Particle Model (SPRAY) to assess environmental impact of an industrial facility in 
complex terrain.’, Water, Air and Soil Pollution, in press. 

Tinarelli G., Anfossi D., Brusasca G., Ferrero E., Giostra U., Morselli M.G., Moussafir J., 
Tampieri F., and Trombetti F., 1994: ‘Lagrangian particle simulation of tracer 
dispersion in the Lee of a schematic two-dimensional hill, Journal of Applied 
Meteorology, 33, pp. 744-756. 

Geai, P., 1987 : ‘Methode d’interpolation et de reconstitution tridimensionelle d’un champ de 
vent: Le code d’analyse objective MINERVE’, Rep. ARD-AID: E34-E11, EDF, 
Chatou, France. 

Pelliccioni  A., Tirabassi T., Gariazzo C., 2003: Coupling of Neural Network and Dispersion 
Models: a novel methodology for air pollution models. Int. J. Environment and  
Pollution. Vol. 20, Nos 1-6, 2003. pp. 136-146 

 



9th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 

 - 329 -

0.0

50.0

100.0

150.0

200.0

250.0

IS
P

IS
P

IS
P

IS
P

IS
P

IS
P

IS
P

IS
P

IS
P

U
N

I

U
N

I

U
N

I

G
U

I

G
U

I

G
U

I

G
U

I

G
U

I

Monitoring stations

N
O

x 
( µ

g/
m

3 )

NOx (Spray) NOx (Spray-NN) NOX (Meas.)

 
Figure 1. Time series of NOx concencetrations predicted by Spray and Spray-NN 
superimposed with NOx observed values at the three selected stations. 
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Figure 2. Scatter plot of Spray-NN derived Vs observed NOx concentrations. 




