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INTRODUCTION 
The Instituto Nacional de Meteorología (INM) has been investigating for some time the 
phenomena related to the formation of fog episodes in the airport of Madrid-Barajas and its 
prediction. Several studies conducted have shown that there is a link between the 
development of fog and the establishment of katabatic flows in the region, generally under a 
synoptic pattern involving either Atlantic or Mediterranean advection. 
 
For the prediction of fog, INM is currently using a 1-D version of the model HIRLAM. In this 
model, terms which are dependent on the horizontal structure of the atmosphere are estimated 
from the output of the operational run of HIRLAM at a resolution of 0.2º. However, at this 
resolution, katabatic winds are not always well reproduced by the 3-D model and, 
consequently, are not reproduced by the 1-D model either. In order to fix this problem, and 
under some conditions, forcing from the 3-D model are substituted by others of climatologic 
origin, estimated from a conceptual model of katabatic winds developed for the region. 
 
In order to check the quality of the conceptual model, a simulation has been conducted with a 
mesoscale model at high resolution. The model used was the Australian model TAPM, and a 
grid spacing of 2-km was used for the innermost of its nested domains. The simulation was 
able to reproduce very well the generation of katabatic winds in the region, and has confirmed 
the main characteristics of the circulatory patterns described in the conceptual model. In 
particular, the simulation has identified areas of convergent flows, with upward movement of 
air, close to the airport of Madrid-Barajas. 
 
GEOGRAPHIC FRAMEWORK AND CONCEPTUAL MODEL OF KATABATIC 
WINDS 
The Madrid airport is located in the centre of the Iberian Peninsula. The surrounding region is 
characterized by the presence of several mountain ranges and river valleys. The main valley 
corresponds to the Tajo river and has a general orientation NE-SW, channelled by the Central 
and the Iberian Mountain Ranges. Four tributaries merge in the lower part. Figure 1 shows the 
complex orography of the region, with mountains well over 2000 m above sea level. 
 
Studies conducted at the INM have shown that the development of mountain breezes is an 
extended phenomenon in this region. In particular, down slope winds (katabatic winds) due to 
differential cooling over complex orography. 
 
The conceptual model (represented in Figure 2) has been developed after the climatologic 
analysis of all available data (Cano et al., 2001): ground-based stations, radio sounding and 
remote-sensing products (radar and satellite). Its main characteristics are the following: 1) 
Light down slope winds (less that 3 m s-1) start blowing at the end of the afternoon and can 
last, depending on the season, until well after dawn. Its vertical depth can reach up to 500 m. 
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Above this level, a return flow in the opposite direction can be sometimes observed; 2) 
Upward movements are developed in areas with flow convergence with an ascent velocity 
estimated in the range 0.02 to 0.03 m s-1. 

Figure 1. Orography of the region under study and location of Madrid-Barajas Airport.  
 

 Figure 2. Conceptual Model of the 3-D katabatic flows in the Madrid Area. Left panel shows 
the model of surface katabatic winds in the Southern Plateau of the Iberian Peninsula. The 
right panel shows the 3-D  model of katabatic wind circulation in the region delimited by a 
white square in the left figure. 
 
A CASE STUDY: SIMULATION WITH HIRLAM AND TAPM 
The night 13-14 November 2003 is characterized by a general high-pressure situation.  The 
central Iberian Peninsula is affected by a light warm and wet south-western advection. Clear 
skies favoured the development of katabatic winds. 
The operational HIRLAM prediction (Figure 3) was not able to reproduce the down slope 
winds, because of its low resolution. 
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Figure 3. HIRLAM streamlines simulated at 0600 UTC, 14 November 2003. The star marks 
the location of Madrid Airport, within the region marked with a square in the left panel. Due 
to the large-scale SW forcing and the low resolution it uses, the operational run did not 
predict the formation of katabatic winds. 
 
To further investigate the phenomena occurring in the region, a simulation with a high-
resolution mesoscale model (TAPM) has been conducted. The TAPM model, developed by 
the Atmospheric Research Group of CSIRO (Commonwealth Scientific and Industrial 
Research Organization), in Australia (Hurley et al., 2001; Hurley, 2002) is a complete 
modeling system for the study of atmospheric transport, although only the meteorological 
module is used in the current study. It is a non-hydrostatic and full primitive-equation model 
with an  ε−E  turbulence scheme.  It works with terrain-following coordinates and allows 
nesting techniques in order to account for small-scale flows in the inner grid.  Non-staggered 
grids are used in the numerical solution of TAPM's equations. 
 
In the present study, four nested domains have been used, each of them consisting of 
50x50x30 cells. The horizontal resolutions are 30, 10, 5 and 2 km. Domains are 
approximately centred at the Madrid-Barajas airport. Figure 1 represents the domain of the 5-
km resolution domain. The simulation is initialized on 13 November at 00 UTC and run for 
48 hours. Therefore, the night under study occupies the central hours of the simulation. 
Analysis and boundary conditions have been provided by the Australian Bureau of 
Meteorology global analysis model. 
 
Wind fields simulated by TAPM reproduce the main characteristics of the katabatic flow 
described by the conceptual model mentioned above. The air follows the terrain features, 
moving downwards and converging in the lowest part of the valley (see left panel of Figure 
4). The adaptation of the flow to the subjacent topography is reduced to a thin layer. The flow 
becomes homogeneous, according to the large-scale forcing, only 500 m above ground level. 
The flow convergence in the valleys, which forces the elevation of the air masses, is also 
evident in the simulation. The right panel of Figure 4 represents the vertical velocity 
computed by the model at 200 m AGL, in a good agreement with the areas of expected 
convergence or divergence. 
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Figure 4. TAPM results at 3 UTC on  at 03 UTC of November 14, 2003.  Left panel shows 
wind at the first vertical level (10 m) and right panel shows vertical velocity at 200m AGL. 
 
The model skill in the prediction of the katabatic winds is assessed from the comparison of 
modelled and measured data. Figure 5 shows the time evolution of wind direction and 
velocity on 14 November. It is evident that HIRLAM 3D, at its operational resolution is not 
able to reproduce the katabatic night time winds (northerly), which TAPM does generate at its 
2x2 km2 resolution.  

Figure 5. Measured wind speed and direction (squares with no line) for day November14, 
2003, and simulated values for HIRLAM 3D (triangles) and TAPM (circles). 
 
THE 1-DIMENSIONAL VERSIÓN OF MODEL HIRLAM (H1D): FOG PREDICTION 
The 1-Dimensional version of HIRLAM developed by the INM starts from an initial column 
of data from the HIRLAM 3D operational run at 0.2º resolution. It incorporates a katabatic 
module based on the conceptual model described above, which has been confirmed by the 
high-resolution model. The katabatic flux routine is activated when a surface inversion is 
detected, modifying some forcing on the model: 

• Horizontal advection of the wind: On activation of the module, a horizontal advection 
is imposed which makes wind zero the next time-step. 

• Horizontal pressure gradient: A geostrophic wind is considered with lineal dependence 
on the value of the temperature inversion. 

• Horizontal divergence of mass: It is also taken as linearly dependent on the 
temperature surface inversion. It will mean a modification of the vertical velocity 
profile. 
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• Horizontal advection of humidity: Proportional to wind velocity. 
• Horizontal advection of temperature: Different schemes are available. In this case, it is 

taken constant. 
Figure 6 shows the application of the H1D model to the night we are studying. The upper 
plots show results when the katabatic module was activated and the lower plots when no 
katabatic forcing was introduced. The introduction of the katabatic forcing reproduced the 
northerly winds during the night hours (central panels), which where not present if only 
HIRLAM 3D data was used. The fact lead to the prediction of fog that night (right upper 
panel), shown by the presence of clouds at surface level.    

 
Figure 6. H1D results (velocity, direction and cloudiness) for November 14, 2003 when the 
katabatic module is activated (above) and when it is not (below). 

 
Finally, Figure 7 shows verification of the model 
for specific humidity after a period of operational 
application of 5 months. The graph shows 
improvement of the prediction of this quantity by 
the H1D model, as Bias (diamonds) and Squared 
Mean Error (ECM, squares) are lower than those 
statistics for H3D (crosses and X respectively) . 
H1D also shows a better evolution of the 
prediction with time after the initialization of the 
model. 

Figure 7. H1D vs. H3D  evaluation 
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