Modelling Air Quality Scenarios in London

Are the EU limit values for NO₂ and PM₁₀ achievable?

David Carruthers, Kate Johnson, Amy Stidworthy, Jo Blair, Cambridge Environmental Research Consultants

at Harmo 9, Garmisch, June 2004

Study supported by

UK Department of Environment, Food and Rural Affairs (DEFRA)

Contents

Introduction

Model Used – ADMS Urban

Validation

Base Case Scenarios

Source Apportionment

Pollutant Mitigation Scenarios – LEZ, Technological

enkircher

Conclusions

Model Introduction and Input Data

• ADMS-Urban

ADMS dispersion model including street canyon effects, nested within an urban area trajectory model.

• Input data

Emissions – London Atmospheric Emissions Inventory (LAEI for 1999, 2004 and 2010)

Meteorology – Hourly sequential Heathrow Airport 1999 (base year) and 1996 (worst case year)

Background – Rural monitoring from monitoring sites around London. Future projections based on EMEP calculations. Constant coarse contribution.

Comparison of Measured and Calculated Annual Average, Percentile and Standard Deviation Data Pairs calculated using ADMS-Urban (a) NO₂, (b) PM₁₀

Calculated Annual Average NO₂ Concentrations

Annual Average PM_{10} concentration calculated using ADMS-Urban

Daily average PM₁₀ concentrations calculated using ADMS-Urban

(b) 7

exceedences

(a) 35 exceedences

Calculated pollutant concentrations corresponding to the EU limit values for 2005 and 2010; exceedence of the limit are shown in bold.

Site	;	NO ₂ 1999] 2010 Anrual Mean	Vleteorology 2010 1 hour mean 18 exceedences	PM ₁₀ 199 2005 Annual <u>Mean</u>	9 Meteorology 2005 Daily average 35 exceedences	2010 Annual Mean	2010 Daily Mean <u>7 exceedences</u>	PM ₁₀ 1996 W 2005 Daily mean 35 exceedences	orst case me 2010 annual mean	teorology 2010 Dailymean 7 exceedences
Roadaide	A3	48	143	27	37	22	39	48	26	54
	Camden	55	178	28	38	23	41	48	26	55
	Harringey	42	157	25	-36	21	38	47	25	52
	Marylebone Road	71	191	37	50	28	47	58	30	62
	Sutton roadside	29	128	24	34	20	37	46	24	52
Background	Bexley	31	172	-24	34	20	35	45	24	52
	Bloomsbury	46	172	25	35	21	37	47	25	53
	Eltham suburban	32	176	24	34	21	35	45	24	52
	Hillingdon	48	168	26	36	21	41	47	25	53
щ	North Kensington	40	151	24	35	21	37	46	25	53
	gin H		jarn	isc	h-P'	9.				
									CE	RC

Source apportioned PM₁₀ at Marylebone Road monitoring station

Modelled contribution of major source groups to annual average NO_x concentrations in the neighbourhood of Heathrow Airport (2005)

2010 LEZ 2 Reductions in PM_{10}

Effect of the proposed Euro V type scenarios on annual average NO_2 concentrations at a range of receptor points across London in 2020.

Comparison of results at 226 London receptor points in Euro V scenario tests, Feb 2004 Annual average NO₂, 2020

Effect of the proposed Euro V type scenarios on annual average PM_{10} concentrations at a range of receptor points across London in 2020.

Comparison of results at 226 London receptor points in Euro V scenario tests, Feb 2004 Annual average PM₁₀, 2020

Conclusions

Without further action the following limits will be widely exceeded in London.

 NO_2 annual average in 2010 (40µg/m³)

 PM_{10} daily average limit value 35 exceedences of $50\mu g/m^3$ in 2005 (adverse meteorology)

 PM_{10} annual average in 2010 (40µg/m³)

Source apportionment allows effective targeting of mitigation measures.

Mitigation measures

LEZ – little impact

Additional technological improvements – Euro V, Euro VI – more

impact

