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Motivation
• Additional information for decision makers

– assess significance of “differences” between alternatives,
– transparency of assumptions.

• Provides an estimate of “extremes” (i.e., exposure 
assessments, “safe zones” for hazardous releases).

• Provides a basis for identifying the major contributors to 
variability and uncertainty (i.e., focus for future research).
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Modeling Atmospheric Transport and 
Diffusion is the Characterization of the 

Effects of Chaos

• Complex Determinism – each molecule obeys 
deterministic laws of physics, but the complex 
interaction of billions of particles allows only a 
statistical characterization of the end result.

• Butterfly Effect – the inevitably incomplete 
initialization will lead to inevitably growing error 
in the model’s prognoses, even if the physics is 
perfectly complete.
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Concentration Fluctuations

– for toxic gases – instantaneous peaks can be lethal … these are short term 
phenomenon … turbulence controlled … most models provide the “time-
average” result……remember, models cannot predict exactly what actually will 
be seen… models can only predict the “average characteristics” of what is to 
be seen….

time-averaged picture

real-time picture

concentration time-series measurements

USEPA Fluid Modeling Facility
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Buildings increase mixing in complex ways
Models cannot predict exactly what is actually seen…  models can only predict 
the “average characteristics” of what is to be seen…..

USEPA wind tunnel experiment, plan view.  Dispersion 
over building arrays and unobstructed fetch.

USEPA wind tunnel experiment, release 
at street level in canyon.9th Harmonisation Conference
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What Do “Real” Plumes Look Like?

digitize\pgrass\exp15.grf
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Project Prairie Grass involved a point source release 0.5 meters above 
the ground.  The experiments were conducted in a manicured nearly-
flat field near O’Neil Nebraska.

Analysis of 10-minute concentration 
values seen for July 23, 1956 from 0800 
to 0810 LST.  

Results shown are for first four arcs.  
Solid lines with symbols show measured 
sulfur-dioxide values.  A Gaussian fit is 
shown for each arc.  The resulting plume 
centerline position, PHIC, and lateral 
dispersion, Sy, is shown for each arc.  

The two vertical solid lines illustrates the 
transport wind direction indicated by the 
2-m wind and the average of the PHIC 
determined individually for each arc.
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The Kincaid tracer experiments involved injecting SF6 into the gas exiting 
up a power-plant smoke stack.  The smoke stack was 183 m tall, and the 
gases were hotter than the air, rose and leveled off at about 300 m above the 
ground.
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.Analysis of 1-hr concentration values seen for 
April 25, 1980 from 1200 to 1300 LST.  Results 
are shown for four arcs. 

Solid lines with symbols show measured SF6 
values.  A Gaussian fit is shown for each arc.  
The resulting plume centerline position, PHIC, 
and lateral dispersion, Sy, is shown for each arc.  

The two vertical solid lines illustrates the 
transport wind direction indicated by the 100-m 
wind and the average of the PHIC determined 
individually for each arc. 

The dotted line (second arc) shows the effect of 
differences in transport between what is 
estimated by a wind direction at the release and 
what actually occurs.
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Composite Analysis for Project Prairie Grass Experiments
All the “scatter” about the blue line (Gaussian fit) is what a 

Gaussian plume model does not characterize.
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Variability In Prairie Grass Centerline Concentrations
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Can we “add back in” the 
uncharacterized “scatter”?

• There are more elegant ways, but a brute force (Monte Carlo) approach is 
to “simulate” the scatter, by running the model 100 to 1000 times, and 
slightly vary components of the modeling system.  

• As depicted on the next illustration, many have simulated the effects of 
input uncertainties.  But this cannot add the “scatter” depicted in the 
previous figures, as it not part of the modeling system to begin with (the 
“never” in the upper right corner of the next illustration).

• Some have varied the internal parameters in the model (e.g., lateral and 
vertical dispersion, plume rise).  These internal parameters in the model 
describe the “average” of what is to be seen, just as the Gaussian profile 
describes the average lateral profile (the blue line shown on the composite 
analysis of Project Prairie Grass experiments).
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Just how much variation is not 
captured by “average” dispersion or 

“average” plume rise?

Lateral Dispersion
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Summary of comparison of Model 3 ( Irwin, 1983) predictions of vertical and lateral dispersion parameters 
with field data from 26 sites.  GeoSD is the geometric standard deviation.

Elevated Lateral Dispersion Sites
Experiment Site           Number       Bias        GeoSD
Hanford(67)-56m 68         1.00            1.52
Hanford(67)-26m 210          0.81           1.51
NRTS 96         0.92           1.23
Karlsruhe                            39         0.61           2.37*
Hanford                              57         0.90           1.19
Suffield 104        1.08            1.43 

Elevated Vertical Dispersion Sites
Experiment Site      Number Bias      GeoSD
Agesta                         24      1.09 1.39
Karlsruhe                    87 1.03 2.04*
Porton 9       0.93 1.46
Hanford 19       1.46 1.49
NRTS                         96       1.49 1.36* 

Near-Surface Lateral Dispersion Sites
Experiment Site        Number      Bias          GeoSD
Mt. Iron                           161         2.07            1.92*
NRTS-B                            44         0.91            1.24
NRTS-A                            84        1.24             1.39
Hanford 30                      117        0.90             1.40*
Green Glow                      86        0.82              1.51
Prairie Grass                   315        1.12              1.68*
Dry Gulch                       266        1.72             1.62
Ocean Breeze                 172        1.78              1.44*
Round Hill II                    30        1.38              1.29
Round Hill I 72        1.13              1.41
Handord(67)-2m            104       1.00              1.49* 

Near-Surface Vertical Dispersion Sites
Experiment Sites    Number Bias      GeoSD
NRTS-B                    42        0.57        1.90
NRTS-A 46        1.26         2.32
Prairie Grass          203        1.24          1.63*
Round Hill I 52        1.03          1.40*

Values with * denote cases where a Normal
distribution best characterizes the random errors, but
for which, we also found a log-normal distribution
fits nearly as well. 
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Plume Rise
• Briggs (1969) Table 5.1, 17 Power Plants.  P/O 

was Lognormal GeoStd = 1.34

• Liu et al., (1984) Fig 8-3 Kincaid GeoStd = 1.29

• Erbrink (1994) 
– Fig 4: Amer Station, The Netherlands GeoStd = 2.10
– Fig 5a:  Amer, Leipzig, Cracow GeoStd 2.10
– Fig 5b:  Profiles of T, Td, WD and U (30 meters 

intervals), GeoStd = 1.48
– Note:  GeoStd = 1.4 (Factor of 2); GeoStd = 2 (Factor of 4)
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Erbrink (1994) Figure 5
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(A) Briggs plume rise with stack top winds.

(B) Briggs plume rise using wind and temperature profiles having
data every 30 m above stack top.
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• s simulates non-Gaussian crosswind 
concentration fluctuations,                   
GeoStd = 1.5 to 2

• fσz,y simulates variability in dispersion 
parameters, GeoStd = (1.35, 1.54) = 1.7

• f∆h simulates variability in plume rise, 
GeoStd = (1.34, 2.0) = 2.12.

• RESULTS:  It is easy to achieve “scatter” of a factor of 
4 to 6!
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Just How Variable Are Wind 
Directions and Wind Speeds?
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An example of comparisons of meso-scale 
wind predictions with airport observations.
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Differences in wind direction of 50 degrees and in wind 
speed of 5 m/s are quite typical.
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Analysis of the difference seen in observed plume transport and observed 
onsite wind direction, during field research studies of plume dispersion.  It 
was seen that there was a combination of two effects:  1) an consistent bias 
(site-to-site error), and 2) a random error (within site error).
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Wind Variability**
variability = bias + noise

• Offsite (Using NWS airport observations)
– WD bias:  Std = 10 to 20 degrees.  
– WS bias:  Std = 1 to 2 m/s.
– Noise:  U and V components Std = 1 to 2 m/s

• Onsite (Research Studies)
– WD bias:  Std = 4 degrees.  
– WD noise:  Std = 2 degrees 

** Note:  Some call this “uncertainty”, but remember a model only 
describes a portion of the variability that occurs naturally.
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Conclusions
• To improve plume rise estimates requires 

accurate characterization of the profiles (30 
m intervals) of temperature and wind (not 
likely).

• Results to date are for rural locations.  How 
much more variability will be added due to 
urban buildings and associated effects?  
9th Harmonisation Conference
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Research Initiatives
• Analyze rural and urban field data to relate dispersion 

variability to bulk statistical properties of  the 
meteorological conditions (e.g., my day/night analysis of 
centerline concentrations)

• Tailor meteorological models to provide estimates of these 
bulk statistical properties.

• Develop an index to characterize the wind speed and wind 
direction variability, and have the meteorological models 
provide an estimate of this index (which probably is a 
function of the synoptic situation).

• Modify dispersion models to provide probability estimates 
of concentration values and related impacts.
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Other Details
• Irwin (1983): Estimating plume dispersion - a comparison of several sigma 

schemes.  J. of Climate and Applied Met., Vol. 22, No. 1, pages 92-114
• Model 3 (simplified version of Draxler’s scheme).

– σy = σaX/Fy(X), where X is distance downwind.
• Analysis involved 26 experiments (4 groups): 

– 1) elevated vertical dispersion values (5 sites), 
– 2) elevated lateral dispersion values (4 sites), 
– 3) near-surface vertical dispersion values (6 sites), and
– 4) near-surface lateral dispersion values (11 sites).

• Liu, M-K., G.E. Moore, J.E. Langstaff, A.B. and  Hudischewsky (1984):  
Diagnostic Validation of Plume Models at a Plains Site, EA-3077, EPRI, Palo 
Alto, CA.

• Erbrink, H.J., (1994):  Plume Rise in Different Atmospheres:  a practical 
scheme and some comparisons with LIDAR measurements.  Atmos. Enviorn. 
(28)28:3625-3636.

• Schere, K.L., and C.J. Coats  (1992): A stochastic methodology for regional 
wind-field modeling.  J. of Applied Meteoro. (31)12:1407-1425.
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Terminology
• Variability - refers to the true heterogeneity that is seen 

in nature (e.g., animals of the same species have 
differences in size, weight, and age).

• Uncertainty - characterizes our lack of knowledge (e.g., 
through a series of measurements of the weight of a block 
of wood, we conclude that 95% of our measurements are 
within 5% of the average of all measurements taken).  We 
trust that the weight of the block of wood is constant, but 
we are uncertain as to the exact value due to measurement 
uncertainty
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C C c co o( ) ( ) ' "( , )α α α β= + +∆  

 
 

where 
 
Co ( )α =  concentration for  
  α-conditions averaged over 

all possible values of  . 
 
  

∆c'=    represents the measurement 
errors. 

 
 

c"( , )α β =   represents the variability 
due to unresolved physics and 
processes (“β-effects” or ignorance). 
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C C fm o( ) ( ) ( ) 'α α α α= + + ∆  
 

where 
 

C C fm o= + =( ) ( )α α  model’s 
average concentration for 
conditions α. 

f ( )α =   the average deterministic 
error in the model’s estimate 
for conditions α. 

∆α '=   the effects of uncertainty and 
unresolved variability in 
specifying the model’s 
inputs. 
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C C fm o( ) ( ) ( ) 'α α α α= + + ∆

• A common misconception is that characterization 
of ∆α’ (e.g. Monte Carlo simulation of input 
uncertainties) is a characterization of c”(α,β).  

• Notice that c”(α,β) does not appear in the above 
equation.  No amount of variation in the model’s 
inputs (∆α’) is going to characterize c”(α,β).

• Characterizing variability due to unresolved 
physics, c”(α,β), can really only be deduced 
through an analysis that involves observations!
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