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Abstract: Models of atmospheric pollutant transport need information about structure of atmospheric boundary layer (ABL). The most 
important characteristic for such applications is parameterization of stable boundary layer (SBL) and mixing layer height (MH). Recently 
many different scheme was employed to calculate SBL height, but there are many problems with implication these models in environmental 
studies. Remote sensing of the atmospheric boundary layer using acoustic sounder provides an opportunity to asses the mixing height based 
on analysing sodar echo strength. During the night, with a steady state of stable boundary layer, mixing height is associated with a range of 
inversion layer. In the present study, an attempt is made to assess the stable boundary layer height over urban area based on six different 
schemes. Furthermore, the relationship of mixing height form sodar measurement and models is examined. The data gathered during field 
experiment in Wroclaw and Krakow are employed for the evaluation of models The evaluation of models employing data gathered during 
field experiment in Wroclaw and Krakow.  
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INTRODUCTION 
An accurate estimation of mixing height (MH) is very important for environmental studies especially for air pollution 
management According to air pollution studies, the most important quantity is stable boundary layer (SBL) height h, due to 
its impact on pollution dispersion (e.g. Gryning et al., 1987). Despite of its importance there is still lack of unique definition 
of MH. Furthermore, height of mixing layer isn’t obtained by standard meteorological observation and the assess ofthe 
mixinglayeroveran urbanareacreates greatproblems (Baklanov et al., 2006). 
 
Within Research Project “The spatial variability of the Atmospheric Boundary Layer over Wroclaw and Krakow” were 
conducted the measurements involving monostatic Doppler minisodar. The measurement carried out during the weather 
characterized by low wind and low cloud cover. The data about inversion depth over city was gather during mobile 
measurements in points located in different land-use areas. The main aim of the project was to determinate the depth of the 
ground based thermal inversion and its spatial variations. The data gathered during mobile session were used to verify SBL 
height models. 
 
BACKGROUND 
Stable Boundary Layer models 
In recent years many works have been done in parameterization of MH, on the base of direct measurements or involving 
different schemes (Baklanov et al., 2008) There are two main approaches: a) profile data about temperature, humidity, wind 
speed; b) surface turbulence variables. Several parameterization for MH during stable condition have been proposed. Many 
models for SBL height are semi-empirical and their university is not a priori guaranteed for different location. In these 
studies, six of simple models (Table 1) were examined.  
 

Table 12 Models equations 
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The calculations of the friction velocity and Monin-Obukhov length were made based on 1) algorithm proposed by Smith 
(Smith 1990, after Mohan and Siddiqui, 1997) and 2) algorithm proposed by Hanna and Pain (Hanna and Pain, 1997). The 
first one was iterative method so that instability was fund during night condition. Therefore, thesecond methodwas chosenfor 
further calculations. 
The calculations of L, u*, θ*for stable conditions the following parameters were taken as an input: z - wind speed height, uz- 
wind speed at z height, T - air temperature [2m], z0 - roughness length, N’ - cloudiness [0-8],  
 
Mobile SODAR measurements 
The research concerning the state of the atmospheric boundary layer involving SODARs (Bradley, 2008, Kalistratova, 1997) 
have been conducted for over 25 years (Pyka, 1991) in the Department of Climatology and Atmosphere Protection, Wroclaw 
University.In order to evaluate spatial distributions of parameters describing the ABL, investigations have been carried out in 
the mobile measurement regime using Mini-SODAR 1DDS (Figure 1.). 
 
 
 Table 13. Operating parameters of SODAR 1DDS  

Weight about 50 kg (about 200 kg 
with trailer) 

Electric power at the 
speaker's input 400 W 

The frequency of the sound 
signal emitted 4000 Hz 

The maximum range of 
probing 

380 meters above the 
ground 

Spatial sampling resolution 2 m (175 samples in a 
range of 350 m) 

Sampling Frequency 0.5 Hz (samples are 
collected every 2s) 

 
 
The mobile SODAR 1DDS is a smaller version of the stationary model. It is installed on a trailer that can be towed by a car. 
1DDS SODAR measures both the strength of the returning echo, and the speed of vertical movements of air as well. Its 
technical specification is presented in Table 2.  
 
Mobile SODAR 1DDS (Netzel et al., 2000) used during the field experiments was towed by a mobile meteorological station 
(measuring car). This station was equipped with GPS and meteorological sensors measuring temperature and humidity.  
SODAR sounding at the selected sites was made each time after stopping the mobile meteorological station within 10 to 
15 minute periods. After that, the car with SODAR was on the move again and followed a prescribed route to the next 
measuring point. Such a group of measurement points situated along the route constitutes one survey session. The selected 
probing time allowed us to gather enough data for later processing and it also guaranteed that the gathered data were free 
from the influence of acoustic interference from the surrounding space. Measurements were carried out during nights with the 
presence of temperature inversion in radiation conditions. Survey sessions were begun not earlier than two hour after the 
sunset and at the time when the nocturnal stable inversion layer near the ground was considerably developed. The entire 
measurement session lasted from 3 to 4 hours. 
 
In order to objectify and improve analyzing of SODAR records, the processing of sodar data have been automated. Removing 
the signal interferences and determining the height of the inversion was realized as a script in GNU Octave system (Eaton, 
2002). This script reads SODAR registration records and removes the vertical noise patterns. The inversion height was 
calculated based on the returning signal strength curve.  
 
OBSERVATIONS SITES AND DATA 
The data gathered during a field experiment conducted in Wrocław and Kraków were chosen for validating parametrization 
schemes. 
 
Wroclaw is located in the south-western part of Poland (51°N, 17°E) in the Lower Silesian region, by the Odra river. 
Wroclaw is generally flat, the altitude varying from 105 to 148 m a.s.l. Such environmental conditions make this city useful 
for assessing the impact of the urbanized area on local climate. 
 
Krakow is the second largest and one of the oldest cities in Poland, situated on the Vistula River in the Lesser Poland region. 
Geographic coordinates of the city center of Krakow are 50°04'N 19°56'E . The topography of city is varied, due mainly to 
the geological structure. The historical city center is located in the Vistula river valley and on Wawel hill and other parts of 

Figure 43. 1DDS SODAR antenna 
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are placed on higher areas The city is surrounded from the north, south and west by the hills, and the differences between 
Vistula river bottom and the highest points reach about 200 m. The lowest point of the city has the height of 187 m a.s.l. and 
the highest 368 m a.s.l. (German, 2007). 
The measurement points were located at fixed locations throughout the cities. These points were selected in order to obtain 
the data for different land use categories (Figure 2. and 3., Table 3. and 4.). 
 
Table 14. Description of the measurement site in Wroclaw 

No. Station’s Description in 
Wroclaw 

 
Figure 44. Localization of measurement points in Wroclaw 

1 6-storey residential 
blocks  

2 10-storey residential 
blocks  

3 
parking near a market 4-
storey residential blocks 
and villas  

4 agricultural area near 
airport  

5 10-storey residential 
blocks near park  

6 
parking near a market, 
4-storey residential 
blocks  

7 near Odra riverbank  

8 parking near a market, 
industrial area  

9 old town  

 
Table 15. Description of the measurement site in Krakow 

No. Station’s Description 
in Krakow 

 
Figure 45. Localization of measurements point in Krakow 

1 6-storey residential 
blocks 

2 agricultural area in the 
hills 

3 city centre near Main 
Railway Station 

4 station near Vistula 
riverbank 

5 residential villas 

6 villas and agriculture 
area (meadows)  

7 park (forestry) in the 
hills 

8 industrial area  

 
 
DATA 
Mobile measurements of stable MH was conducted involving sodar system and standard meteorological measurement. Data 
about air temperature, relative humidity, and backscatter intensity form sodar were collected during field experiment. The 
measurements were carried out during weather characterized by low wind and low cloud cover. There are many controversies 
with describe MH during stable condition, but for our purposed the inversion depth from sodar data was recognized as MH 
(Godłowska and Tomaszewska, 2005). 
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Parameterization of stable MH was made using roughness length and zero place displacement, calculated form land cover 
and buildings geometry based on method proposed by Gal, Sümeghy and Unger (Gal and Sümeghy, 2007, Gal and Unger, 
2009) and implemented in GRASS environment (Netzel, 2011). 
 
Moreover temperature and wind speed from NOAA gridded data using baric surfaces 850 hPa and 950 hPa were used.  
Data gathered during selected days (Table 3.) were chosen for the further analysis :  
 
Table 3. Date of measurements selected for analyses  

Date City 
12.12.2008 Wroclaw 
13.12.2008 Krakow 
7.02.2009 Wroclaw 
3.04.2009 Wroclaw 
12.05.2009 Wroclaw 
13.04.2009 Krakow 

 
RESULTS AND DISCUSSION 
The results of parameterization formulas were compared with inversion height measured during mobile sodar sounding. 
Measurements carried out during the survey session in Wroclaw and Krakow, has produced 51 data about inversion height, 
which were used for further analysis. The results of the comparison are presented in table no. 4 
 
Table 4. The relationships between inversion height calculated and measured by sodar 

Model no. 
Differences (model, SODAR): 

Correlation 
coefficient R minimum maximum average  STD 

1 60,95 928,50 400,90 214,66 0,48524 

2 −93,75 1799,78 487,24 570,69 0,53946 

3 −84,16 735,74 222,15 229,37 0,55725 

4 109,22 1035,98 472,35 231,07 0,48524 

5 300,35 794,67 607,86 119,42 0,00724 

6 −139,41 275,45 18,26 101,10 0,55624 

7 4,71 1332,39 498,58 385,54 0,55907 
 
The correlation coefficient between calculated and measured inversion height varied form 0 up to 0.56, it is typical value 
(Vickers and Mahrt, 2004), moreover it should be emphasize the data were obtained in areas with different land-use. The best 
correlation was achieved for models no. 3, 6 and 7. However, inversion height obtained form models 3 and 7 gave much 
higher values. The averaged inversion height form sodar was 161 m a.g.l., but for mentioned models was 383 m and 659 m 
(respectively). The model no. 6 showed the best compliance with measurements. The average height of mixing layer was 
179 m, and the regression slope was 1.08 (for the model 3 and 7 respectively 2.33 and 3.99). The relationship of mixing layer 
height calculated from the formula 6 and obtained from the acoustic survey is shown in figure 4. Additionally, the regression 
line in the form y=ax, equation of the regression line and determination coefficient are placed on figure 4. 
 

 
Figure 46. The relationship between stable mixing height calculated form models no. 6 and measured by sodar 
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SUMMARY 
The stable boundary layer height was calculated using NOAA gridded data and surface measurement of temperature and 
wind speed. The direct measurement involving mobile mini-SODAR were used to estimate height of layers in areas with 
different types of land-use. The cases with well-defined stable boundary layer depth were used for detail analyses.  
 
According to the verification of simple diagnostic models carried out with direct measurements of mixing height during 
stable condition, the best compliance is obtained for the model no. 6, proposed by Zilitinkevitch and Mironov (Zilitinkevitch, 
and Mironov, 1996). In general, other formulas performed poorly and often grossly overestimated the stable boundary layer 
height. The above study indicated that the inversion height was significantly different depending on the land-use cover and 
distance from the densely built-up areas. Therefore, using data from only a single site can provide incomplete information.  
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