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Abstract: The ability to predict the consequences of an atmospheric release of a toxic material accurately, as opposed to conservatively, is of 
increasing importance to decision-makers who need to plan for or respond to such incidents.  A conservative estimate of casualties, for 
example, may involve multiplying the average population density by the area over which a conservatively-chosen threshold atmospheric 
concentration is exceeded on average.  We have begun to investigate the requirements for producing accurate consequence estimates using 
modern atmospheric dispersion models, including the capabilities and limitations of different end-to-end consequence modelling approaches.  
Some issues of concern include the use of ensemble-average concentration predictions in conjunction with toxicity models, especially 
advanced models involving the toxic load; the fact that different methods exist for calculating the toxic load from time-varying exposures but 
none have been experimentally validated; and the potentially inapt comparison of atmospheric dispersion model predictions to the 
consequences of real-world historical incidents.  The work presented here focuses primarily on the problems associated with the choice of 
toxic load model and the potential use of individual realizations of a release in place of ensemble-average concentration predictions for 
consequence estimation.  Our study of individual releases from the FUSION Field Trial 2007 (FFT07) experiment and from VTHREAT-
generated predictions of a small-scale chemical attack indicate that casualty estimates can have a substantial dependence on the choice of 
toxicity model.  We have also probed the limitations of using ensemble-average concentration predictions for casualty estimation and the 
potential use of low-order concentration moments to improve those estimates. 
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INTRODUCTION 
A common use of atmospheric dispersion models is to estimate the potential health hazard that would arise from an 
atmospheric release of a toxic material.  These estimates frequently have involved calculating the number of people who may 
be exposed, on average, to a threshold level of the toxic material.  Although these methodologies are often intended to 
provide conservative estimates of the number of people affected, users of dispersion modelling-based consequence 
assessment tools are increasingly finding themselves in need of accurate (not conservative) estimates of the range of 
casualties that might be expected.  Accurate estimates of the range of casualties require accurate knowledge of not only the 
atmospheric dispersion, toxic effects, and spatial distribution of the population, but also of the statistical distribution of those 
quantities, such as the stochastic effects of atmospheric turbulence on dispersion or uncertainties in the distribution of the 
population.  Furthermore, the proper end-to-end modelling of casualties requires that these calculations be combined in such 
a way that preserves the distributions of the random variables and correlations between them.  For example, a toxicity model 
that is sensitive to the time dependence of the exposure may require knowledge of turbulence-induced fluctuations around the 
ensemble average concentration.  Our recent research has indicated that certain end-to-end modelling schemes in use today 
actually may inadvertently underestimate casualties (Czech, C. et al., 2011). 
 
Our current research has focused on developing a conceptual framework for an internally-consistent end-to-end calculation of 
casualties using the outputs of state-of-the-art atmospheric dispersion models in combination with toxicity and population 
models.  The work presented here focuses on two areas:  the differences between casualty estimates generated from 
predictions of chemical concentrations averaged over the ensemble of turbulent realizations of the chemical plume and those 
generated from predictions of individual plume realizations, and the differences between casualty estimates generated using 
different toxicity models that are presently in use or have been proposed to be used in hazard assessments.  Other topics of 
investigation include the effect of uncertainties in the population distribution or in estimates of the toxicological parameters 
on hazard assessments and the proper way to compare the predictions of atmospheric dispersion models to the historical 
record of chemical releases. 
 
OVERVIEW OF CASUALTY ESTIMATION 
Hazard prediction models frequently are used to provide estimates of either hazardous areas or the number of casualties that 
may result from the release of a hazardous material.  The work presented here focuses on estimating casualties resulting from 
toxic inhalation exposure.  The traditional method of estimating such casualties uses the lognormal (probit) dose-response 
model, in which the probability of an individual being injured is estimated based on the inhaled dose.  The inhaled dose is 
presumed to be proportional to the total dosage accumulated over the course of the exposure at the location of the individual.  
The relationship between the dosage and the probability of casualty may be stated as follows (Finney, D.J., 1947), 
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Here, D(r) is the dosage at location r and x is a parameter associated with the normally-distributed random variable X, which 
is equated with the lognormally-distributed dosage (X = log(D)).   σ is the variance of the population response around the 
mean μ, which is usually associated with the logarithm of the median effective dose ED50 (μ = log(ED50)).  When Eq. 1 is 
linearized through a probit transformation the toxicity relationship may be expressed as follows, 
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Here, YP is the probability of casualty expressed in probit units and the probit slope is mP = 1/σ.  Casualty assessments that 
use the dose-response model typically assume that since it is uncertain how susceptible a given individual at location r is to 
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the toxic dosage D(r), the probability of casualty may be equated with the fraction of individuals who would suffer casualties 
if exposed to a comparable dosage (as estimated, usually, from the results of animal experiments).  Individual susceptibility 
within the population is assumed to be a lognormally-distributed function of the dosage.  It may be noted that the probability 
of casualty is not a simple linear function of the dosage. 
 
In the case of steady exposures, the dosage is defined as the atmospheric concentration at which the exposure occurs, C(r), 
multiplied by the duration of the exposure, T. 

     ( ) ( )D r C r T=       (4) 
Substances whose toxic effects can be described by Eqs. 3 and 4 are said to follow Haber’s Law of toxicity.  Many modern 
atmospheric dispersion models attempt to predict the concentration history at a particular location.  Real-world exposure 
profiles contain temporal fluctuations and even intermittency due to turbulent diffusion and plume meandering or time-
varying releases.  In the case of a time-varying exposure profile, the dosage is frequently generalized to the time-integrated 
concentration, 
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It should be noted dose-response relationships like those expressed in Eq. 3 are parameterized using data from animal 
experiments that involve steady exposures, so there is little empirical basis for assuming that Eq. 3 is valid when dosage is 
defined as in Eq. 5.   
 
The toxic effects of certain industrial chemicals and chemical warfare agents have been found to deviate from Haber’s Law.  
Their effects are better described by a lognormal response to a phenomenological quantity called the toxic load, which for 
steady exposures is defined as, 

( ) [ ( )] .nTL r C r T=       (6) 
The toxic load plays the role of a generalized dosage, such that TL(r) may be substituted for D(r) in Eqs. 1 through 3.  The 
population response is characterized by three toxicity parameters, TL50, mP, and n.  When the toxic load exponent, n, is 
greater than 1, the toxic effects of high-intensity concentration fluctuations are amplified relative to the effects of long 
exposure durations, T.  There is no empirical basis for extending Eq. 6 to the case of time-varying exposure profiles and there 
is no accepted generalization of this equation, although modern consequence assessment models commonly – but not 
universally – employ a generalization suggested by ten Berge (ten Berge, W.F. and M.V. van Heemst, 1983), 
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Other generalizations of the toxic load model are discussed below.  The fact that the integrand in Eq. 7 is not a linear function 
of the concentration when n ≠ 1 poses some challenges for calculating toxic effects.  First, the effects of biological 
phenomena such as respiration and tissue uptake suggest that there is some timescale τ over which the exposure profile c(r,t) 
should be time-averaged before evaluating Eq. 7; the exponent in Eq. 7 makes the evaluation of the toxic load sensitive to 
this averaging time in a way that Eq. 5 is not (Sommerville, D.R. et al., 2006).  It has been argued that the respiration rate 
places a lower bound on the value of τ, but its actual value – which may depend on the nature of the toxic substance – 
generally is not known.  For similar reasons, Eq. 7 is particularly sensitive to the use of ensemble-averaged concentrations (a 
common output of modern atmospheric dispersion models) in place of individual concentration realizations; this problem is 
discussed below. 
 
THE CHOICE OF TOXIC LOAD MODEL 
The ten Berge generalization of the toxic load equation (Eq. 7) is not the only method that has been proposed for calculating 
toxic loads from time-varying exposure profiles.  Other methods that have been proposed (Czech, C. et al., 2011 and 
Sommerville, D.R., 2006) include equating the steady concentration in Eq. 4 with the time average of the concentration over 
the exposure interval (“average concentration method”, Eq. 8) (Hilderman, T.L. et al., 1999); equating the steady 
concentration with the peak concentration over the exposure interval (“peak concentration method”, Eq. 9) (Stage, S.A., 
2003); using a definition of the toxic load that additionally uses information about the concentration variance (we refer to one 
such method that has been proposed for use with the HPAC modelling system developed by the US Defense Threat 
Reduction Agency (DTRA) as the “concentration intensity method” (Sykes, R.I. et al., 2007), which we have modified to 
apply to individual plume realizations (Eqs. 10-11); and using a definition of the toxic load that accounts for concentration 
intermittency (we consider one such method called the Griffiths and Megson model, Eq. 12 (Griffiths, R.F. and L.C. Megson, 
1984, Griffiths, R.F. and A.S Harper, 1985)). 
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In Eq. 12, T+ is the time during which c(r,t) > 0 over the exposure interval T.  Since no method of calculating the toxic load 
has been validated for use with time-varying exposure profiles, it is important to be able to understand the effect of the 
method of calculating the toxic load on casualty estimates.  Our research has been able to place some theoretical bounds on 
the problem (Czech, C. et al., 2011), but the results of applying these different toxic load models to real-world atmospheric 
dispersion data is also illuminating.  Figure 1 shows the variability in the toxic load calculated concentration measurements 
made during the FUSION Field Trial 2007 (FFT07) short-range atmospheric dispersion experiment (Storwold, D.P., 2007).  
This experiment involved a number of different types of releases (continuous vs. puff, single vs. multiple, day vs. night, etc.).  
The differences between toxic load models can be substantial; for example, the difference between toxic loads calculated 
using the peak concentration model and the average concentration model can differ by several orders of magnitude.  For the 
toxic load exponent chosen in this comparison, n = 2.1, the concentration intensity and ten Berge models nearly agree; this is 
an artefact of the choice of toxic load exponent, as we have demonstrated that these two models should agree exactly when n 
= 2.  These results indicate that care should be taken when considering toxic load-based casualty estimates since none of 
these models have been validated using data from toxicological experiments.  The exact impact on casualty estimates 
depends, of course, on whether the toxic load values fall near the TL50 value or far from it, where “near” is defined by the 
probit slope. 
 

 
Figure 19.  Ratios of toxic load values, for four different toxic load models compared to the ten Berge toxic load model, calculated from 
FFT07 field experiment data.  The ratios are ordered by release (trial) number and each point represents data taken from an individual 
concentration sampling instrument.  The toxic load exponent was taken to be n = 2.1 and a 10-second time-averaging was applied to each 
concentration time series prior to calculating the toxic load. 

 
THE USE OF ENSEMBLE-AVERAGED PLUMES IN PLACE OF INDIVIDUAL PLUME REALIZATIONS 
The hazardous plume resulting from the release of a toxic material will develop in an unpredictable manner due to random 
atmospheric turbulence.  If the atmospheric turbulence is characterized statistically, however, it is possible to predict the 
development of the plume in an average sense or to predict “typical” (not “actual”) realizations of the plume.  Most 
atmospheric dispersion models that are presently used for consequence assessment modelling predict only the low-order 
statistical moments of the distribution of the spatiotemporal concentration field c(r,t) (here referred to as the “plume”) over 
the ensemble of possible turbulent realizations of the plume.  Most models predict only the lowest-order concentration 
moment, ),( trc , or the lowest-order dosage moment, )(rD , where the overbar indicates an average over all members of the 
ensemble.  Others, such as the SPICPUFF model that drives the HPAC modelling system developed by the US Defense 
Threat Reduction Agency (DTRA) (Sykes, R.I. et al., 2007), additionally predict the second-order moments 2)],([ trc and 

.)]([ 2rD   It should be noted that the shape of the distribution of concentrations at a particular location may, in general, differ 
from the shape of the distribution of dosages. 
 
Since the output of a typical atmospheric dispersion model is an ensemble-averaged concentration field, casualties are usually 
estimated using Eqs. 3 and 5 (or the corresponding equations for the toxic load) with ),( trc in place of c(r,t).  Therefore 
casualties are estimated from the ensemble-averaged plume, which is an entity that is never observed in nature.  What is 
actually of interest in casualty estimation is the statistical distribution of casualties over the ensemble of turbulent plume 
realizations – perhaps described by low-order moments such as the mean number of casualties and their variance – rather 
than the number of casualties resulting from the lowest-order moment of the concentration (the ensemble-average plume).  
The typical method of calculating casualties using atmospheric dispersion models is summarized on the left of Eqs. 8 and 9, 
whereas the actual quantity of interest is shown on the right, 
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Here, Cas[...] represents the integral of the probability of casualty at location r, P(r), over the spatial population distribution 
to estimate the total number of casualties.  It should be noted that if there is population movement during the exposure, the 
spatial population distribution needs to be accounted for in an earlier stage of the calculation.  In general, the full statistical 
distribution of casualties cannot be calculated unless some assumptions are made about the statistical distribution of the 
concentration, dosage, or toxic load.  Our research has indicated that if the statistical distribution of concentrations is well-
described by the two lowest-order concentration moments along with a simple assumption about temporal correlations, then 
the statistical distribution of casualties may be calculated in a straightforward manner when Haber’s Law holds (Ambroso, 
M. et al., 2011).  The calculation is not so straightforward when toxic load modelling is employed, particularly in the case of 
some toxic load models that are more complicated than the ten Berge model (Eq. 7); we have yet to explore the full 
implications of toxic load-based casualty estimation using statistical distributions of the concentration field. 
 
Our previous research has indicated that using the ensemble average plume (described by ),( trc ) to calculate the toxic load 
may significantly underestimate the spatial extent of a hazard compared to using the ensemble-averaged toxic load calculated 
from the toxic loads for individual plume realizations (each described by a unique c(r,t)) to estimate the hazard area in the 
case where n > 1 (Czech, C. et al., 2011).  This is because the ensemble averaging smoothes out the plume in time and space, 
reducing the high-intensity concentration fluctuations that contribute significantly to the toxic load in toxicity models such as 
the ten Berge model (Eq. 7).  This is a case in which using a more sophisticated toxicity model (the toxic load in place of the 
dosage) actually may be capable of producing worse casualty estimates if used improperly (i.e., when applied to the 
ensemble-average concentration field predicted by many modern atmospheric dispersion models). 
 
Figure 2 illustrates the variability in hazard area estimation that can arise when applying toxic load models to individual 
concentration realizations generated using the US National Center for Atmospheric Research (NCAR) VTHREAT 
computational fluid dynamics (CFD)-based simulation environment (Bieberbach, G. et al., 2010).  VTHREAT was used to 
simulate the simultaneous release of 18 instantaneous puffs of 1.6 kilograms of a neutrally-buoyant gas under convective 
atmospheric conditions.  The 18 puff sources were spread over an area of approximately 100 meters by 200 meters.  Each 
point in Figure 2 represents, for one of the 18 sources, the ratio of the area exceeding a particular toxic load value calculated 
using one of three toxic load models to the area exceeding the threshold calculated using the ten Berge model.  The colour of 
each point indicates which method of calculating the toxic load is being compared to the ten Berge calculation.  The area 
exceeding the threshold is meant to represent the area over which an inhalation hazard might arise from a particular source.  
The horizontal axis of the figure corresponds to different choices of the threshold toxic load, with lower toxic load thresholds 
(larger absolute hazard areas) on the left and higher toxic load thresholds (smaller absolute hazard areas) on the right.  The 
coloured vertical lines indicate the range of toxic loads over which the hazard is expected to be lethal (TL1 to TL99) if the 
source mass is scaled to the values indicated (300 lbs., 1 ton, and 10 tons) and the toxicity parameters (TL50, mP, and n) are 
taken to be those of chlorine. 
 
Figure 2 indicates that the size of the lethal hazard area can sometimes vary significantly when comparing closely-spaced 
identical puff sources.  A model that predicts the ensemble-average concentration would not capture this variation; each 
source would yield identical average concentration predictions if the wind field were uniform.  Also, one can again see that 
toxic load-based hazard predictions can vary significantly among the different methods of calculating the toxic load, with the 
peak concentration method tending to yield the largest toxic load hazard areas and the average concentration method tending 
to yield the smallest hazard areas.  The variation in hazard area size among toxic load models also has a dependence on the 
release mass. 
 
CONCLUSIONS AND FUTURE WORK 
Many consequence assessment studies result either in a single point estimate of casualties or a range of estimates based on 
different release or meteorological conditions.  We have suggested, based on theoretical considerations and CFD simulations 
of individual realizations of chemical releases, that turbulence-induced variability in atmospheric concentrations may be an 
important source of variability in casualty estimates.  Particularly problematic is the use of atmospheric dispersion models 
that predict only ensemble average concentrations in conjunction with toxicity models.  This methodology is incorrect even 
for dosage-based casualty estimates and the problem is amplified in the case of toxic load-based casualty estimates; counter-
intuitively, the “better” toxicity model (toxic load) has the potential to produce worse casualty estimates for highly 
fluctuating or intermittent exposures.  We are presently investigating the degree to which predictions of the statistical 
distribution of casualties can be improved by including predictions of higher-order concentration moments or information 
about spatiotemporal correlations.  We also have investigated another issue of concern with toxic load modelling, which is 
that no validated and accepted toxic load model exists for the case of time-varying exposures.  The possibly-chemical-
dependent concentration averaging time is not known experimentally and different proposed methods of calculating the toxic 
load can lead to considerable differences in casualty estimates. 
 
It may be useful to consider other sources of uncertainty or variability in casualty estimates.  For example, the toxicity 
parameters used in casualty estimation (ED50, TL50, mP, and n) are often associated with considerable experimental 
uncertainty that could propagate into significant uncertainty in casualty estimates.  Another source of uncertainty is the 
population distribution; in particular, high spatial resolution atmospheric dispersion modelling (such as in urban areas) could 
provide misleading casualty estimates if they were applied to the use of coarse-grained (low spatial resolution) population 
distributions.  One other important area of research is the comparison of atmospheric dispersion model predictions to the 
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historical record of toxic chemical releases (deliberate or accidental).  Atmospheric concentrations typically are not measured 
during real-world incidents, so such comparisons usually rely on comparing model estimates of the lethal area to observations 
of where people actually died.  Such comparisons are fraught with difficulties, not least among them being the potential need 
to model the effects of high spatial resolution terrain elevation, land cover, and population distributions to capture adequately 
the effects of gravity-driven dense gas dispersion, vegetative filtration (possibly coupled with surface reactivity), or 
heterogeneous population distributions (possibly including the effects of self- or directed-evacuation and sheltering or other 
protective measures).  Future studies of the sensitivity of consequence assessment modelling to these modelling assumptions 
and model inputs may be able to provide bounds on the confidence with which casualty estimates can be stated. 
 

 
Figure 2.  Ratios of the areas exceeding a given toxic load threshold (toxic load hazard areas), for three different toxic load models compared 
to the ten Berge toxic load model, calculated using VTHREAT simulation data of an 18 instantaneous puff source chemical attack under 
convective atmospheric conditions.  Each point represents a ratio of toxic load hazard areas for one of the 18 sources.  The toxic load 
threshold is varied from low to high across the horizontal axis and vertical lines indicate the range of lethal toxic loads for scaled-up releases 
of a neutrally-buoyant chemical with the same toxicity as chlorine. 
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