Evaluation of wind field and dispersion models in the presence of complex terrain

14th Harmo Conference

*Radi Sadek*¹, *Lionel Soulhac*¹, *Fabien Brocheton*² and *Emmanuel Buisson*²

¹Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon, Ecully, France

²NUMTECH, Aubière, France

- Context
- Presentation of the tested models
- Presentation of the methodology of evaluation
- Evaluation of wind flow models
- Evaluation of dispersion models
- Conclusion

• Context

- Presentation of the tested models
- Presentation of the methodology of evaluation
- Evaluation of wind flow models
- Evaluation of dispersion models
- Conclusion

1	ÉCOLE CENTRALELYON
---	-----------------------

Motivation:

 Importance of correct wind flow modeling in the presence of complex terrain for local scale dispersion (1-10km)

Objectives:

- Evaluate wind flow models and study their limitations in complex terrain
- Evaluate dispersion models
- Test each wind flow/dispersion coupling approach

- Context
- Presentation of the tested models
- Presentation of the methodology of evaluation
- Evaluation of wind flow models
- Evaluation of dispersion models
- Conclusion

CENTRALELYON

Tested models

- Fluent: well-known CFD code, with a RANS k-ε turbulence model with Duynkerke constants
- Flowstar: linearized analytical model based on the theory of Jackson and Hunt (1975) and Hunt *et al.* (1988)

Dispersion models

- **SLAM:** a Lagrangian dispersion model developed at the Ecole Centrale de Lyon (recently validated by Vendel *et al.*, 2011)
- **ADMS:** well-known Gaussian plume model, with possibility of use of a complex terrain flow model using Flowstar

- Context
- Presentation of the tested models
- Presentation of the methodology of evaluation
- Evaluation of wind flow models
- Evaluation of dispersion models
- Conclusion

U

Methodology

 Comparison of the wind flow models with wind tunnel experiments in the presence of hills and valleys of different steepness and roughness

ÉCOLE CENTRALELYON

Description of the experiments

Wind tunnel experiments in neutral atmospheric conditions:

• EPA RUSHIL experiment (Khurshudyan et al., 1981): three 2D hills with various ratios of h/L

• Almeida et al. (1992) experiment : isolated or several consecutive 2D steep hills -> valleys

Hill	h (m)	L (m)	h/L	<i>u</i> _* (m/s)	u_∞ (m/s)	z ₀ (m)
RUSHIL H8	117	1872	0.0625	0.178	4	0.157
RUSHIL H5	117	1170	0.1	0.178	4	0.157
RUSHIL H3	117	702	0.166	0.178	4	0.157
Almeida	280	1080	0.259	0.079	2.147	0.015

- Context
- Presentation of the tested models
- Presentation of the methodology of evaluation
- Evaluation of wind flow models
- Evaluation of dispersion models
- Conclusion

Parametrisation of the wind flow models

NUMTECH

- Specified roughness length for both models
- Theoretical wind profile in neutral boundary layers as input **for both models:**

$$u(z) = \frac{u_*}{\kappa} ln\left(\frac{z}{z_0}\right)$$

 Theoretical turbulent kinetic energy and dissipation rate profiles for the CFD code Fluent (k-ε model)

$$k(z) = \frac{u_*^2}{\sqrt{C_{\mu}}} \qquad \text{with } C_{\mu} = 0,033$$
$$\varepsilon(z) = \frac{u_*^3}{\kappa z}$$

Wind flow results (RUSHIL experiment)

NUMTECH

12

Wind flow results (RUSHIL experiment)

Considerable differences between the two models with increased roughness length

> No sensitivity to the value of z_0 when z_0 >0,157m with Flowstar

h/L=0,06

NUMTECH

ÉCOLE CENTRALELYON

experiment

- Context
- Presentation of the tested models
- Presentation of the methodology of evaluation
- Evaluation of wind flow models
- Evaluation of dispersion models
- Conclusion

U

Parametrisation of the dispersion models

 Simulation of a single source of a NO₂ pollutant at 20m above ground level in the presence of Almeida hill

Gaussian Plume Model (ADMS)	 Point source No exit velocity An averaging time of 15 minutes
Lagrangian Model (SLAM)	 Point source No exit velocity A time step of 5s 1000 particles per time step A simulation time until a stationary state is observed

Results

Results are comparable between the Lagrangian and Gaussian dispersion models when a Flowstar field is used

Results

Analytical and CFD flow models as input

NUMTECH

High differences are calculated when different flow models are used

Conclusions

Wind flow models

- A RANS k-ε CFD model can be used for simulations of regions of complex terrain at local scale
- The validity of Flowstar (hills of ratios up to 0,167) is not satisfactory
 - Speed-up for lower hills
 - Recirculation regions for steeper hills

Dispersion models

• The impact of the choice of the wind flow model on the dispersion is very high

Perspectives

• The CPU time of CFD models is high, when compared to analytical models (almost negligible)

Model	Flowstar	Fluent
CPU time (s) of the Almeida hill case	~1s	~50 <i>s</i> – 500 <i>s</i>

• The use of partially converged CFD calculations can be a way of reducing CPU time

See poster presentation by Sadek et al. (H14-168)

Thank you for your attention!

Questions?