THE "VOTRE AIR" PROJECT: DEVELOPMENT OF A MODELLING TOOL TO ASSESS THE ATMOSPHERIC EXPOSURE IN PARIS

Frédéric Pradelle¹, Fabien Brocheton¹, Benjamin Chabanon¹, Céline Pesin¹, Cécile Honoré², Fabrice Dugay², Karine Léger², François Dambre², Vivien Mallet³ and Anne Tilloy³

¹ NUMTECH, Aubière, France
 ² AIRPARIF, Paris, France
 ³ INRIA, Rocquencourt, France

Outline

Context and objectives of the project

Principles of the system

- Details on the traffic emission calculation
- Details on the assimilation procedure
- Presentation of results
- Conclusions and future work

High resolution modelling tools are more and more used to assess local air-quality exposure in cities, including real-time survey.

One limitation concerns the emission data : use of standard temporal profiles

For survey application, need to couple simulation and observation (assimilation) at urban scale as at regional scale

Objectives of "Votre Air" project:

- Develop an operational tool to monitor air-quality and test it over Paris
- \succ coupling observations and simulations for maps,
- > with real-time traffic emission calculations,
- > and including test of communication tools for public

According to a recent opinion survey, for the inhabitants of Paris and its area :

✓ "Environment" is the first concern
✓ Among "environmental topics", air quality is the first one
✓ 68 % think that AQ is bad or very bad in Paris
✓ 52 % do not think that AQ is better in other European capitals
✓ 58 % think that "road transports" are responsible for poor AQ

Key figures about Paris and Ile de France :

- **City of Paris** (as defined by the 1860 limits)
 - ✓ 2.1 M inhabitants in 1999 (20% of the IDF population)
 - ✓ 105 km2 (<1% of the IDF area)
 - ✓ 20 to 25 000 inhabitants/km²
 - "Urban unit" (continuously built area)
 - ✓ 9.6 M inhabitants in 1999
 - ✓ 2700 km2
 - ✓ 3500 inhabitants/km²

√4.5 millions of personal vehicles

√128 millions of km by day

✓Road transport : 50 % for NOx emissions, 45 % for CO, 35 % for VOCs ;

✓Regional emissions : 10 % of NOx national emissions, 12 % of VOCs national emissions.

Framework :

Festival "Futur en seine" = Festival about innovation on numerical applications

Cap Digital (business cluster) / Ile France council : Financial support

Partners :

- AIRPARIF: non-governmental association in charge of study, survey and forecast of air-quality over "Paris-Ile de France" area
- INRIA: national research institute on computer science and control
- > NUMTECH: private company on atmospheric modelling

Principles : Assimilation

Concentrations computed by ADMS urban are temporally independent : analysis state vector cannot be injected in the model for next calculation => choice to use the Best Linear Unbiased Estimator (BLUE method), based on prescribed error covariance matrices

Urban scale : state error covariance cannot be parameterised as a simple function of the geographical distance (observation close to road network does not provide information in isotropic way) => development of a specific approach

Computations are done using generic data assimilation library Verdandi (INRIA)

- K : gain matrix
- H : observation operator
- B : state error covariance matrix
- R: observational error covariance matrix

Principles : Assimilation

Modelling of the state error covariance matrix (B)

Assumption: high error correlations between receptors on the same road or on connected roads

Assumption: error correlation between a road's receptor and a background's receptor < error correlation between two (equally close) road's receptors</p>

$$\mathbf{B}_{ij} = v_s \exp\left(-\frac{d_{ij}}{L_d}\right) \exp\left(-\frac{\left|P_i - P_j\right|}{L_p + \alpha \min(P_i, P_j)}\right)$$

receptors

i and j: two receptors

 $L_{\rm d}$: characteristic distance along the road network

 L_p : characteristic distance transverse to the road network

 $\boldsymbol{\alpha}$: scaling coefficient

 $\boldsymbol{\nu}_s$: variance

The covariance is assumed to decrease exponentially against the distance along the road and to decrease almost exponentially in the direction transverse to the road.

The correction $\alpha \min(P_i, P_j)$ is added so that the decorrelation length is increased with the distance to the network.

Principles : Assimilation

Modelling of observation error covariance matrix (R)

≻Diagonal matrix : $R = v_o I$

 v_o : observational error variance

Validation of error covariance matrices

>Use of χ^2 test to choose appropriate empirical parameters for error covariance matrices

$$\sum_{n=0}^{T} \frac{\chi_n^2}{F_n} \approx T$$

with

$$\chi_n^2 = \left(\mathbf{o}_n - \mathbf{H}_n c_n^b \right)^T S_n^{-1} \left(\mathbf{o}_n - \mathbf{H}_n c_n^b \right)$$

 F_n : number of observations

N represents the time step

Principles : From traffic to AQ

≻NO₂

▶ Period : May to June 2011

>8 stations for the simulated domain

Location	Name	Туре	<u>Altitude</u>
Luxembourg	PA06	Urban	12.6 m
Eiffel tower	PA07	Urban	4 m
Flocon street	PA18	Urban	16.1 m
Neuilly	NEUI	Urban	2.6 m
Elysée	ELYS	Traffic	2.1 m
Bonaparte	BONA	Traffic	1.7 m
Célestins	CELE	Traffic	1.6 m
Haussmann	HAUS	Traffic	3.7 m

Scores of the model (before assimilation)

Stations	Obs. mean conc. (μg/m³)	Bias (μg/m³)	Corr.	RMSE (μg/m³)	Relative RMSE
PA06	28.8	1.8	0.72	12.3	0.45
PA07	30.6	-9.7	0.69	18.0	0.44
PA18	26.2	-12.0	0.76	17.4	0.46
NEUI	31.0	2.7	0.74	14.2	0.50
ELYS	34.2	-25.2	0.61	33.5	0.56
BONA	37.6	-25.8	0.57	35.4	0.56
CELE	38.3	-38.0	0.54	47.8	0.63
HAUS	34.6	-22.0	0.54	36.6	0.61

Over all the stations, Correlation = 0.6 and RMSE = 29.2 (60% of the mean observed concentration)

• Over the roads, concentrations are often underestimated

>Scores of the assimilation at the station ignored by data assimilation

Stations	Obs. mean conc. (μg/m³)	Bias (µg/m³)	Corr.	RMSE (μg/m³)	Relative RMSE
PA06	28.8	8.1	0.84	12.3	0.45
PA07	30.6	-7.8	0.79	14.8	0.37
PA18	26.2	-9.6	0.80	14.9	0.39
NEUI	31.0	5.0	0.79	13.6	0.48
ELYS	34.2	-17.4	0.81	23.9	0.40
BONA	37.6	-11.7	0.83	20.6	0.33
CELE	38.3	-30.1	0.65	39.8	0.52
HAUS	34.6	-9.4	0.77	22.6	0.40

• L_d = 2 km, L_p = 50 m, α = 1

• $v_o = 100 \ \mu g^2 m^{-6}$ (observed error variance = upper bound on uncertainty of measurement from expertise of AIRPARIF)

• $v_s = 650 \ \mu g^2 m^{-6}$ (deduced from χ^2 diagnostic)

Scores of the assimilation at the station ignored by data assimilation

Stations	Obs. mean conc. (μg/m³)	Bias (μg/m³)	Corr.	RMSE (μg/m³)	Relative RMSE
PA06	28.8	8.1	0.84	12.3	0.45
PA07	30.6	-7.8	0.79	14.8	0.37
PA18	26.2	-9.6	0.80	14.9	0.39
NEUI	31.0	5.0	0.79	13.6	0.48
ELYS	34.2	-17.4	0.81	23.9	0.40
BONA	37.6	-11.7	0.83	20.6	0.33
CELE	38.3	-30.1	0.65	39.8	0.52
HAUS	34.6	-9.4	0.77	22.6	0.40

- Bias at traffic stations is reduced most of the time
- No specific trend for urban stations
- Correlation and RMSE are always improved

(mean decrease of 25% for RMSE)

No assimilation

+2.426e6 2011-06-27 00:00:00 400

Assimilation

Conclusions and future work

✓A methodology for assimilation at urban scale has been developed and tested

✓A software application for near real-time survey of air-quality, coupling simulation and observation, has been tested over Paris

Presentation to public has been done during a numerical festival (positive interest and feedback)

Conclusions and future work

Validation of urban assimilation approach to another cities, and extension of the methodology (treatment of height of measurement, taking into account tunnels, dependency on meteorology, bias removal)

Work on non-parametric error modelling, on uncertainty estimation, and ensemble forecast

Coupling and adapt the method to dense low-cost measurement network and mobile measurement

>Extending the system to whole domain of Paris (with improvement of the modelling)

www.numtech.fr

6, Allée Alan Turing Parc Technologique de la Pardieu 63170 Aubière France Tel. : (33) 4 73 28 75 95 Fax : (33) 4 73 28 75 99

