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Abstract: We developed a fluctuating plume model able to evaluate all the higher concentration moments only requiring the  
knowledge of the first one. The simple algorithm used to calculate the meander centroid component is independent of the  
method used to obtain the mean concentration field and makes the computational time lower than most meandering plume  
model versions. Thus it is especially suitable for practical applications.
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INTRODUCTION

Modelling  concentration  fluctuations  is  fundamental  to  a  great  number  of  practical  applications  such  as 
prediction of air pollution, determination of reaction rates in turbulent chemical reactors and analysis of turbulent 
combustion. In this work we present an offline approach able to evaluate the concentration field of passive and 
reactive scalars from their mean concentration field. This method is based on the assumption (Gifford, 1959) that 
the total plume dispersion can be split into two independent components, the  meandering barycentre and the 
relative  dispersion.  While  the  meandering  motion  of  the  plume  centroid  has  to  be  modelled,  the  relative  
dispersion, taking into account the turbulent mixing and scalar dissipation, can be simply parameterized. The 
barycentre  probability  density  function  is  obtained  (Cassiani  and  Giostra,  2002)  by  applying  a  linear  
compression to a previously evaluated or measured mean concentration field. Then it is coupled with a Gamma 
distribution that parameterizes the mixing around the centroid and it is integrated to provide, in principle, the  
whole concentration probability density function. Being independent of the method used to obtain the mean 
concentration  field  this  approach  is  an  ideal  offline  tool  to  predict  second  and  higher  order  concentration 
moments.  The model adaptability to different kinds of turbulence is shown by comparing its results first with 
analytical predictions present in the literature for homogeneous isotropic turbulence and then with a dispersion 
experiment in a canopy generated boundary layer. The simplicity of the numerical  algorithm used to calculate 
the meandering centroid component makes the model very fast and suitable for practical applications.

FLUCTATING PLUME MODEL FORMULATION
In the fluctuating plume approach the absolute dispersion can be divided into two statistically independent parts,  
the meandering motion of the barycentre and the relative diffusion around it.  Following Gifford (1959) the  
concentration PDF can be written as:

                             pc (c ; t , y , z )=∫0

H

∫−∞

∞
pcr (c ; t , y , z , ym , z m) pm( t , ym , zm)dym dz m

 

(1)

where  pc (c ; t , y , z )  is the concentration probability density function (PDF),  pm  is the centroid position 

PDF, pcr  is the relative concentration PDF and H  is the characteristic vertical length scale. Using equation 
(1) and the definition of statistical moment we have:
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where 〈cn
〉  and 〈cr

n
〉  are the n-order moments of the absolute and relative concentration, respectively.

Equation (2) summarizes the idea of the fluctuating plume stating that the concentration field can be evaluated 
through two different contributions, the meandering of the plume centroid that has to be simulated in a fixed  
coordinate system relative to the source, and the relative concentration statistics that has to be parameterized on a 
local reference frame around the barycentre. We assume statistical independence between vertical and lateral 
diffusion, so that we can factorize both the meander and the relative concentration PDFs.

EVALUATING PLUME CENTROID STATISTIC.
The recent versions of fluctuating plume model are coupled with a Lagrangian Stochastic Model for the particle 
trajectories.  Our choice of Cassiani and Giostra (2002) approach to evaluate the meandering barycentre part  
removes the need for the knowledge of the trajectories, requiring only a mean field concentration input and thus  
relaxing the need for  Lagrangian  modelling.  We neglect  the along wind dispersion, so that,  apart  from the 



normalisation factor,  the crosswind-integrated  concentration  〈c y〉  corresponds  to the PDF for  the vertical 

position pz :
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where the double integral at denominator represents the normalisation coefficient. Luhar et al.(2000) derive the 
trajectory of the instantaneous plume centre of mass zm( t )  from the particle trajectory z ( t )  generated by a 
single particle Lagrangian stochastic model using the linear transformation:

zm (t )=
σ z

2
−σ zr

2

σ z
2 ( z ( t )−〈 z ( t )〉)+〈 z ( t )〉                                                  (4)

where σ z
2

 and σ zr
2

 are respectively  the absolute and relative vertical position’s variances. We use the same 

linear transformation but applied to the points of the calculation grid instead of Lagrangian trajectories. It  is  

trivial to show that a relation between the PDFs of two stochastic processes linearly related such as zm ( t )  and 

z (t )   is given by pz Δz= pzm Δzm . This is a compression of the PDF (σ zr<σ z )  that reduces the variance 

conserving at the same time all the other scaled moments. Hence the resulting form of PDF is pzm=0  out the 

compressed  concentration  field  and  pzm=pz Δz / Δzm=p z σ z
2/ (σ z

2−σ zr
2 )  in  it.  The  relative  position 

variance has to be parameterised. We propose a form similar to Mortarini et al. (2009) given by: 

σ zr
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αN gε (t +t s)
3

[1+αD (gεt3)
2 /3]

3 /2
                                                                 (5)

where  g is  the  one-dimensional  Richardson constant,  ε is  the dissipation rate  of  turbulent  kinetic  energy 

(TKE), t s accounts for a finite initial source size and the parameters  αN  and αD  are introduced to set the 
contribution of two different  behaviours  for small  and large time. In fact  the expression corresponds to the 
inertial range relative dispersion formulation at small time, and tends to Taylor’s limit at large time, accounting 
also for the boundaries’ effect that reduces the vertical spreading.

PARAMETERISATION FOR THE RELATIVE CONCENTRATION.
Following Luhar et al. (2000) and Mortarini et al. (2009) the relative concentration PDF can be represented as  
function of the Gamma distribution:

pcr (c ; x , z , z m)=
λ λ

〈cr 〉 Γ ( λ )( c
〈cr 〉)

λ−1

exp(− λc
〈cr 〉)                                           (6)

where 〈cr 〉  is  the  mean  relative  concentration,  Γ ( λ)  is  the  Gamma  function  of  λ=1/ icr
2

and 

icr=σ cr /〈cr 〉  is the relative concentration fluctuation intensity. This PDF has the following property:
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〈cr 〉

n
                                                      (7)

Being the nth-order moment proportional to the first moment to the nth power,  an expression for the mean  
relative  concentration  is  needed.  We  consider  the  expression  〈czr 〉= pzr Q /U ,  where  pzr  is  relative 

position PDF, Q  is the release of material per unit of time e U  is the mean wind. Although it is possible to 

use a simple reflected Gaussian form (Franzese, 2003) for  pzr , a skewed PDF obtained as the sum of two 
reflected Gaussian PDFs (Luhar, 2000; Dosio and Vila-Guerau de Arellano, 2006) was found to provide better  
overall  agreement  with  the  experiments,  especially  for  highly  asymmetrical  turbulence.  The  relative 
concentration fluctuations intensity icr  can be expressed as proposed by Gailis et al. (2007) and Ferrero et al. 
(2012):

icr
2 =(1+i cr0

2 )(〈cr 〉/ 〈cr0 〉)
−ζ

−1                                                     (8)

where icr 0  is the icr ’s minimum, 〈cr0〉 is the 〈cr 〉 ’s maximum and ζ shape parameter within the interval 
(0,1). The values are chosen to have the best agreement with experimental data. As far as we know, in literature 
it  is  one  of  the  few  prescribed  forms  dependent  on  height,  taking  into  account  the  conservation  of  TKE 
dissipation in the vortex scale reduction close to the boundaries. 



TEST CASES.
We remark the independence of the presented model from the requested mean concentration field that can be  
obtained either from models or experiments. Hence it is possible to select the most suitable method to evaluate  
the mean field, as a simple and fast Gaussian model,  or as a more complicated and efficient  single particle  
model, depending on the class of turbulence investigated. 

Homogeneous and isotropic turbulence: crosswind dispersion
The first step is the application of the model to the homogeneous and isotropic turbulence case. This is a first  
validation of the model and represents a good approximation for the crosswind direction even in more realistic 
kinds of turbulence. The mean and mean square concentration fields are investigated and compared with the  
theoretical  predictions  in  the  inertial  subrange  found  in  literature.  Thomson  (1990)  obtained  a  theoretical  
prediction for the second-order moment developing a two particles model based on two Langevin equations for 
the particles separation and barycentre. Following Thomson (1990), Ferrero and Mortarini (2005) prescribe an 
analytical  formula  for  the  concentration  fluctuations  replacing  the  Gaussian  distribution  for  a  Richardson 
distribution in the separation PDF expression. An analytical  solution for concentration moments can also be  
carried out from the equation (2) for the fluctuating plume models until the total and meander expansions are 
Gaussian and only for the case of not bounded variables,  as shown by Luhar et  al. (2000). The mean field  
required is obtained by the simplest single particle model wherein the velocity PDF can be considered Gaussian 
yielding a simple expression for the Langevin equation. 

Figure  1:  Non-dimensional  mean  (left)  and  standard  deviation  (right)  concentration  at  centreline  as  function  of  non-
dimensional time.

Figure  1  shows  that  the  model  accurately  reproduces  the  expected  behaviours  of  mean  and  mean  square  
dimensionless concentration at the centreline. In particular, the model coincides with the Luhar et al. (2000) 
analytical one; in fact, the coupling between the simple single particle model and  the linear transformation of  
Luhar et al. (2000) ensures that the meandering PDF is Gaussian and hence the equivalence between the two 
methods . The mean field fits very well the Thomson (1990).  About the second moment, the obtained results fit  
better the Thomson (1990) analytical prediction than the Ferrero and Mortarini (2005) one, probably because of 
the single particle model used to obtain the mean concentration field in this simulation. The slight overestimation 
between t=T L  and t=5TL  of the model in respect to the Thomson (1990) checks the statement that in the  
intermediate  subrange  the  separation  PDF departs  from the  Gaussian  distribution  and  approaches  with  the 
Richardson one (Ferrero and Mortarini, 2005).

Simulation in a canopy layer.
The interaction of the atmospheric flow with the buildings of an urban area generates a boundary layer with  
specific characteristics. The vertical structure of urban boundary layers comprises a roughness sub-layer near the 
ground and an inertial  sub-layer  above. In  the lowest  part  of the roughness  sub-layer,  the buildings form a  
canopy. Difficulties arise in developing guidelines depend upon unique building arrangements and geometry.  



Meteorological data in the urban boundary layer are not as available as from rural sites, hence we consider the 
control and repeatability of laboratory experiments. In particular we apply the fluctuating plume model to the  
Huq and Franzese (2013) laboratory experiment who has undertaken in a water tunnel at the Environmental 
Fluids  Lab  at  the  University  of  Delaware.  They  present  measurements  of  turbulence,  velocity  and  mean 
concentration of a passive scalar released from a continuous point source for three model urban canopies with  
different aspect ratios Ar  (i.e. the ratio between the building height H b  and width wb ). The measurements 

for the canopy with Ar=0 . 25 , which consists of a regular series of prisms, were taken by Macdonald and 

Ejim (2002), while the measurements with Ar=1  (arrays of cubes) and Ar=3  (arrays of tall prisms) are new. 

The building length in the along-wind direction  B  is constant. The velocity and scalar measurements were 
taken in the plane along the centreline of the canopy where the scalar source is located at ground level. All 
experiments simulate in-canopy dispersion in the near field, where the plume vertical dimension is smaller or  
comparable to the mean building height. Huq and Franzese (2013) use a simple vertically-reflected Gaussian 
model to approximate the mean concentration field:

〈c( t , y , z )〉=
Q

U πσ y σ y

exp(− y2

2σ y
2
−

z2

2σ z
2 )                                               (9)

where σ y
2
=σ y0

2
+σ v

2 t2
 and σ z

2
=σ z0

2
+σ w

2 t 2
. The values of quantities used in the Gaussian model and for scaling the 

data are summarized in the table (1), including the free-stream velocity U ∞ , the rooftop level wind speed  U ∞ , source 

size  σ y0=σ z0=σ0 , vertical and transverse velocity variance  σ v
2

 and  σ w
2

, time scale  T y  and  T z  and length 

scale L y  and Lz . 

Figure 2: Non-dimensional mean (left) and root mean square (right) concentration at the ground, at centreline of the canopy 
as function of non-dimensional distances from the source.

The dimensionless mean concentration as a function of the scaled distance from the source is plotted in the  
figure 2 (left). The fluctuating plume agrees well with both Gaussian model and water tunnel data. The curves  
follow the -2 power law decay of concentration with distance from the source.  The difference  between the 
fluctuating plume and the Gaussian model in the far field is due to equation (9) containing only the near field 
(and not the far field) approximation of Taylor (1921). The evolution with the scaled distance from the source of  
the normalised standard deviation is plotted in the figure 2 (right). Again, the fluctuating plume fits well with the 
water tunnel data (personal communication, May 30, 2012). The use of the constant values (table 1) for the  
turbulence parameter instead of the measured profiles (Huq and Franzese, 2013) is a simplification for both the 
first  and  the  second  moment.  In  order  to  improve  the  comparison  between  the  fluctuating  plume  and  the 
experimental data, it would be possible to use as mean field input a single particle model instead of the Gaussian 
one, but it would mean the loss of the distinguished feature of the model, i.e. the simple and fast computation.  



Table 1: Summary of experimental data and model parameters.

Ar
Q

(cm3s-1)
so 

(mm)
Hb 

(mm)
U∞ 

(mms-1)
sw 

(mm)
sv 

(mm)
Tz 

(s)
Ty 

(s)
Lz 

(mm)
Ly 

(mm)
Ub 

(mms-1)
U (mms-

1)

0.25 2.18 5 50 78 4.7 7.0 10.7 7.1 50 50.0 52 52
1 1.4 2 32 94 2.1 3.1 15.5 5.6 32 17.5 52 27
3 1.4 2 96 110 1.5 2.2 64.3 7.8 96 17.5 77 28

CONCLUSIONS.
The proposed fluctuating plume model includes the most favourable features of the existing versions, resulting 
versatile and simpler than the previous methods. The mean concentration field required by Cassiani and Giostra  
(2002) approach can be obtained either from models or from experiments, allowing to choose the most suitable 
method to evaluate the mean field, as a simple and fast model, e.g. a Gaussian model, or as a more complicated  
and  efficient  model,  e.g.  a  single  particle  model,  depending  on  the  class  of  turbulence  investigated.  The  
parameterisation of relative motion is established on the analytical expressions producing the best agreement 
with the experimental data, e.g. the Gailis et al. (2007) height-dependent formula for the relative concentration  
fluctuations. The model can be easily adapted to different classes of turbulence modifying the parameterization  
of the relative contribution. After the validation in homogeneous and isotropic turbulence, the model was applied 
to  a  canopy  layer  and  compared  with  a  water  tunnel  data  showing  an  overall  good  agreement.  The  low 
computational time demand coupled with the good efficiency makes the model suitable for practical applications  
considering  that  it  is  able  to  evaluate  higher  order  concentration  moments  in  few  seconds  on  a  standard  
computer.  In  fact,  the  evaluation  of  concentration  fluctuations  plays  a  crucial  role  in  a  great  number  of 
environmental  issues:  prediction  of  air  pollution,  simulation  of  chemical  reactions  of  pollutants  in  the 
atmosphere, analysis of turbulent combustion and estimation of odour threshold.
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