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Abstract:  In this paper, we present an adaptive algorithm for the estimation of source parameters when a release of 
pollutant in the atmosphere is observed by a sensor network in complex flow field. Due to the error-based 
observations, inverse statistical methods have to be used to perform an estimation of the parameters (position of the 
source, time and mass of the release) of interest. However, given the complexity of the dispersion model, even with a 
Gaussian assumption on the sensor-based errors, direct inversion cannot be done. In order to have quick results, 
classical MCMC, while accurate, is too slow. We then demonstrate the accuracy of using adaptive techniques such as 
the AMIS (Population Monte-Carlo based). We finally compare the results with the classical MCMC estimation in 
term of accuracy and velocity of implementation. 
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INTRODUCTION 
Nowadays, the threat of pollution due to the release, either accidentally or deliberately, of Chemical, 
Biological, Radiological or Nuclear (CBRN) agents is high. As a consequence, rapid detection and early 
response to a release of a CBRN agent could dramatically reduce the extent of human exposure. The 
capability to detect and estimate the pollutant source term parameters is therefore a problem of great 
importance. 
 
In this paper, we address the problem of estimating the source parameters from noisy measurements. For 
realistic modelling of the pollutant dispersion, a Lagrangian particle model is generally used in order to 
take into account inhomogeneities in the flow and turbulence fields (Reynolds, A.M., 1996). Given the 
complexity of such dispersion model, even with a Gaussian assumption on the concentration 
measurement errors by the sensors, direct inversion cannot thus be done. As a consequence, this 
challenging problem is becoming an important subject of study. 
 
Existing techniques include both stochastic and deterministic approach. A first approach is backward 
modelling, also known as Lagrangian backtracking. Fundamentally, there is an intrinsic time-symmetry in 
atmospheric transport, which is the basis of backtracking for inverting concentration measurements of 
atmospheric tracer (Issartel, J.-P. and J. Baverel, 2002), (Hourdin, F., O. Talagrand and A. Idelkadi, 
2006). Other non-stochastic techniques mostly present the optimization of a cost function. Among 
approaches that deal with noisy observations, the most popular is the Bayesian Monte Carlo method, that 
has been introduced in (Patwardhan, A. and M.J. Small, 1992) and used since then (Dilks, D.W., R.P. 
Canale P.G. Meier, 1992) and (Bergin, M.S. and J.B. Milford, 2000). In (Yee, E., 2008), the authors 
propose to use a Markov chain Monte Carlo (MCMC) algorithm with reversible jump to perform an 
estimation of a variable dimension parameter. This classical algorithm produces good results but suffers 
from a weak convergence rate and strong dependencies on the starting values. 
 
In order to contribute on this problem, we propose in the present work adaptive Monte-Carlo based 
methods. More specifically, the proposed method, called adaptive multiple importance sampling (AMIS) 
(Cornuet, J.M., J.M. Martin, A. Mira and C.P. Robert, 2012) is derived from the Population Monte Carlo 
methods (Cappé, O., A. Guillin, J.M. Marin and C.P. Robert, 2004) which are based on Importance 
Sampling (Glynn, P.W. and D.L. Iglehart, 1989), a well-established method used to simulate a difficult 
target distribution. The advantage over MCMC is that the scheme is unbiased at any iteration and thus can 
be stopped at any time, while iterations improve the performances of the importance function. The 
adaptive step in the AMIS makes us believe in the accuracy of this algorithm regarding the classical 
MCMC methods.  We also present an adaptive MCMC-based algorithm, called Adaptive Metropolis-
within-Gibbs, which will be compared to the proposed AMIS. 



In a first part, we present the dispersion model on which we decided to start the construction of our 
estimation method, and the observation model. Then, we present the Bayesian solution we propose to 
tackle this challenging problem. We finally present the main ideas of the proposed adaptive algorithm 
before comparing it to the classical and an adaptive extension of the MCMC method used in (Yee, E., 
2008) in a complex scenario located in a quarter of Paris. 
 
 
THE CONVECTION-DIFFUSION MODEL 
 
Assuming that we are interested in the concentration of hazardous material evolving during a certain time 
in a certain place of interest, it would be very useful to work with an accurate convection-diffusion model. 
So far, their exists a great number of models, based on various hypothesis, including varying boundaries 
constraints, for example. Anyway, based on (Wilson, J.D. and B.L. Sawford, 1996), a general 
expression can be extract though. C  being the concentration of hazardous material, u   the 
(homogeneous) wind velocity vector, K  the eddy-diffusion coefficient, and Q the strength of the 

source, we have: 

               
C

t
uC(KC) Q                            (1) 

s.t. nC  0 at   

Moreover, Q qs (x x0 )[H (t  ton)H (t  toff )], with H the Heaviside unit step function. This 

concentration formulation is based on the stochastic evolution of a pollutant release in the atmosphere. 
The initial modelling for one particle is formulated with a system of stochastic differential equations such 
that : 

dXt Utdt  

                                           dUt  a(Xt,Ut, t)dt  C0(Xt, t) 1/2
dWt                                         (2) 

where X and U correspond to the position and velocity respectively of a marked fluid particle. 

a(.) represents the drift coefficient vector, (.)the volatility and C0 the Kolmogorov universal constant. 

This Lagrangian Stochastic model will be used for the simulation of the marked fluid particles needed to 
obtain the mean concentration of pollutant.  
 
 
PROBLEM FORMULATION 
 
Given a set of measurements Ztj

i obtained at several times t j
 and at several positions 

i  1, , Nc defined by the Nc
sensors located in the surveillance area, the objective consists in 

estimating the source term characteristics  which include the source position xs, ys, zs , the mass and 

the time of the release, i.e. qs  and ts  respectively. The measurements are generally defined as : 

                                                               Ztj

i  g(, t j , i)t j

i                                                          (3) 

where t j

i denotes a normal random variable that takes into account potential noise in the sensor as well 

as the uncertainty on the dispersion model. The function g(, t j , i) corresponding to the measured 

concentration at the i -th sensor at time t j  for some source characteristics  is defined as : 

                                             g(, t j , i)  C(x, t;)h(x, t
t j

t jT | xi, t j )dxdt                          (4) 

where C  is the previously defined concentration function, and h  the filter function associated to the i -

th sensor for a measurement at time t j . Since in this study we consider a Lagrangian stochastic model, 



this concentration function does not have an analytical expression with respect to the parameters of 
interest  and thus is approximated by generating Np

marked fluid particles from the dispersion model.  

Consequently, the estimation of the source term charateristics from the measurements is a challenging 
problem with no analytical solution with such complex dispersion model. In order to have a solution, one 
can resort to indirect inference through the use of Bayesian Monte-Carlo techniques. 
 
BAYESIAN SOLUTION 
 
In a Bayesian context, the aim is to compute the posterior distribution in order to be able to give an 
estimate of the parameters of interest. Using Bayes’ rule, this posterior distribution can be expressed 
                                                          p( | Z) p(Z |)p()                                        (5) 

which corresponds to the product of the likelihood and the prior distribution of . By assuming that the 
measurement noises, defined in Eq. (3), are independent and identically distributed, the likelihood 
distribution used in this paper is  

                                         p(Z |) exp  1

2 obs
2

Ztj

i  g(, t j , i) 2









j1

NT


i1

Nc

                                 (6) 

Let us remark that the proposed algorithm can be used whatever the likelihood is. Concerning the prior 
information related to the source term characteristics, we will consider in this study that we are in the 
worst case scenario, meaning we have no prior information on the parameter. The corresponding law is 
then a classical uniform law on some compact support. Since we do not have an explicit expression of the 
function g(.) that links the parameters of interest and the observations, the value of  that maximizes 

the posterior distribution could not be found analytically. As a consequence, some approximation 
methods have to be used.  Existing approaches that deal with such probabilistic model are mainly based 
on Monte-Carlo methods. These computational algorithms rely on repeated random sampling to obtain 
numerical approximations of some untractable distribution of interest. However, such algorithms could be 
computationally intensive if ‘‘naïve’’ proposal distributions are used. In order to overcome this problem, 
we propose to use some recent advances in Monte-Carlo methodology by using adaptive scheme.  
 
Proposed Adaptive Multiple Importance Sampling 
The real challenge with the Importance Sampling is the choice of the proposal distribution. The closer the 
proposal is from the target distribution, the faster (and thus efficient) is the algorithm. The AMIS 
facilitates that constraint by adapting automatically the proposal at each iteration of the algorithm. For 
instance, parameters which define the proposal distribution are updated such that the Kullback-Leibler 
divergence between the target and the proposal is minimized. In this paper, a mixture of D  normal 
distributions has been chosen. The update step thus concerns the mean vector, the covariance matrix as 
well as the weight associated to each component of the mixture.  This method has the potential advantage 
to converge faster than classical MCMC algorithms (such as the one proposed in (Yee, E., 2008) for 
source term estimation). The proposed method is summarized in Algorithm 1. 
 
SIMULATION RESULTS 
 
In this section, we compare the proposed AMIS algorithm with the Metropolis-within-Gibbs (MWG) 
used in (Yee, E., 2008). As shown in Fig. 1, we consider an instantaneous release at time ts  200swith 

mass qs  50in the ‘‘Opera Garnier’’ quarter of Paris.  

Let us remark that the complexity of each method is directly related to the number of algorithmic particles 
as well as the number of fluid particles used in the dispersion model. Indeed, at each time we propose a 
new algorithmic particle which corresponds to new values of the source term characteristics, the 
likelihood function defined in Eqs. (3-4) has to be evaluated and thus the dispersion model has to be run 
in order to approximate the function g(, t j , i). 

From Fig. 2, we can see the approximation of the source characteristics posterior distribution defined in 
Eq. (5) obtained with AMIS and MWG. From these results, we can clearly remark that the proposed 
AMIS allows to have a better exploration of the solution space. Indeed, the true value of the source 



characteristics are close to the mode of the approximate posterior distribution from the AMIS whereas it 
is not the case with the MWG. Finally, as illustrated in Table 1, the AMIS outperforms the MWG by 
giving us better posterior probability values evaluated around the true location of the source. 
 

 
Figure 1. Scenario considered in this paper. On the left: location of the sensors (red circles) and the source (black 
cross) – on the right: Measured concentration of the different sensors in log scale. 
 

 

 
Figure 2. Results obtained with the proposed AMIS (first row) and the existing MWG (second row) with 400 
algorithmic particles. From left to right: Approximation of the posterior of the source location – Approx. of the 
release time posterior (true value in red) – Approx. of the release mass posterior (true value in red). 

Table 1. Approximation of p xs, ys   xs
TRUE , xs

TRUE   Z  obtained with the different algorithms. 

# Algorithmic Particles 200 400 600 800 1000 2000 

  20m AMIS 0.1557 0.1574 0.1597 0.1658 0.1765 0.2199 
MWG 4.10-6 8.10-6 4.10-2 0.1061 0.1289 0.1487 

 10m AMIS 0.0135 0.0266 0.336 0.379 0.0632 0.0916 
MWG 9.10-12 1.10-10 2.10-3 0.013 0.0213 0.0281 

  5m AMIS 0.0010 0.005 0.0081 0.0115 0.0156 0.0265 
MWG 9.10-16 6.10-14 9.10-5 0.0014 0.0043 0.0073 

 
CONCLUSION 
 
We present in this article an efficient adaptive Bayesian algorithm for source term estimation. The 
accuracy of the estimate obtained with the proposed approach in a complex scenario is better than with 
existing schemes based on MCMC, thus clearly showing the benefit of adaptive strategy for solving such 
challenging problems.  
 



Algorithm 1: Proposed Adaptive Multiple Importance Sampling (AMIS) 

Initialization: t  0 

Draw independently N0
particles 0

(i ) 
i1

N0 from a proposal distribution q0 (.) 

For 1 i  N0
do 

   Compute 0
(i )  N0q0 (0

(i ) ) and the importance weights w0
(i )  p(0

(i ) | Z) / q0 (0
(i ) ) 

End For 

Update the parameters of the proposal distribution 0
d,0

d 
d1

D
 by using a criterion such as the Kullback-Leibler divergence and 

the weighted set of particles 0
(i ), w0

(i ) 
i1

N0  

Iterations of the algorithm: t 1, ,T  

For  t 1, ,T  do 

   Draw independently Nt
particles t

(i ) 
i1

Nt from a proposal distribution q( |t1,t1)  

   For 1 i  Nt
do 

    Compute t
(i )  N0q0 (0

(i ) ) Nlq(t
(i );l1,l1)

l1

t and wt
(i )  p(t

(i ) | Z) t
(i ) / Njj0

t




1

 

   End For 
   For 0  l  t 1 and 1 i  Nt

 do 

      Update the importance weights of the particles generated at previous iterations l
(i ) l

(i ) Ntq(l
(i );t1,t1) and 

wl
(i )  p(l

(i ) | Z) l
(i ) / Njj0

t




1 

   End For 

   Update the parameters of the proposal distribution t
d,t

d 
d1

D
 by using a criterion such as the Kullback-Leibler divergence 

and the weighted set of particles  l
(i ), wl

(i ) 
i1

N0 
l0

t
 

End For 
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