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Introduction

High fidelity atmospheric dispersion modelling…

… increasingly depends on our knowledge of the exact 
environmental conditions.
Such conditions are unknown to some extent, especially in 
the case of accidental releases.

We propose a risk assessment framework that accounts for 
such uncertainty in the form of probability distributions.
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Dispersion & uncertainty modelling

Dispersion modelling
• The exact source location is supposedly known.
• The release starts on March 13th 2011 at 06:35:00 and ends at 06:40:00.
• Meteorological conditions (wind speed, direction, etc. …) are uncertain

(imprecise).

Source
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Dispersion & uncertainty modelling

Dispersion modelling
• A Lagrangian model (SLAM) is used for simulating the dispersion of the 

pollutant (assuming a light gas behaviour).
• A pre-computed CFD database enables the calculation of the perturbed

wind field in the constructed area in the vicinity of the source for a large 
variety of incident winds (using multi-linear interpolation).
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Dispersion & uncertainty modelling

Uncertainty modelling
• The lack of knowledge about some parameters describing the release conditions 

is modelled as a probability distribution.
• These variables are assumed independent in a first simplified approach.

Parameter Probability distribution

Wind speed Gaussian with mean 2 m.s-1 and standard deviation
0.17 m.s-1

Wind direction Truncated Gaussian with mean 225° and standard 
deviation 22.15°, over [215°; 234°]

Cloud cover Truncated Gaussian with mean 6 octas and 
standard deviation 1 octa, over [1 octa; 9 octas]

Temperature Uniform over [14°C; 16°C]

Emitted quantity Uniform over [70 kg.s-1; 130 kg.s-1]

Source height Uniform over [1.75 m; 2,25 m]
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Dispersion & uncertainty modelling

Quantity of interest for risk assessment
• We consider the cumulated dose causing irreversible effects on human health

according to INERIS recommandations for phosphine :

where :
 � denotes the random vector of uncertain release conditions
 � and � are the position and exposure time respectively
 � is the instant phosphine concentration calculated by SLAM
 � = 0.53 according to INERIS

• The subject is assumed not to move during exposure.
• The risk analysis consists in estimating:

where � = 20.10 according to INERIS.

� �, �, � = ü � �, �, � d�

� = Prob � �, �, � > �
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Risk assessment methodology

Brute-force approach
• The spatio-temporal field of exceedance probabilities can be estimated using

Monte Carlo sampling :

�ü �, � = 1� ü � � �, �, � > �

• This estimator converges as the number of samples (the number of SLAM runs) 
increases.

• Convergence is measured in terms of its coefficient of variation:
� = Var �ü �, �

�ü �, �
= 1 − � �, �

�� �, �

• Hence, a minimum of 10 000 samples is required in order to achieve a 
reasonable coefficient of variation of 32% on a probability of 10-3.

Such a large number of SLAM runs is incompatible with the urgency 
associated to accidental releases scenarii.
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Risk assessment methodology

Elements of surrogate modelling

We propose to replace SLAM by a surrogate model
that is much faster to evaluate.

DOE

fit

validate
- Compute summary statistics about the relative error between the original model and its
approximation.
- The purpose is to qualify the surrogate model on a bounded domain of the input space.

predict
- Use the surrogate model instead of the original model to speed up uncertainty
quantification 
or to optimize post-processings.
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Risk assessment methodology

Scalar-valued Gaussian process predictors (a.k.a. Kriging)
• Assume we want to predict the dose � = � �, � for some fixed point � and 

time �, but for any parameters value �.

• Kriging is a Bayesian prediction technique that starts from the following Gaussian 
process prior model:

� � = � � T� + � �
where:
 � � T� is the trend expressed as a linear model;
 � � is a zero-mean stationary Gaussian process with covariance function:

� �, � = �� � − �′ , �

• Hence, the observations � in the dataset � and some unobserved value � �
we would like to predict are jointly distributed as follows:

�
� �

 ~� ��
� � �

, � � � �(�, �)
� �, � 1
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Risk assessment methodology

Scalar-valued Gaussian process predictors (a.k.a. Kriging, cont’d)
• Kriging exploits the non-zero cross-correlation term �(�, �) in order to predict

the unobserved value given the observations:

�ü � = � � ∣ � = �, � = 1, … , � , �, �

• This conditional distribution remains Gaussian:

�ü � ∼ � � � , � �
with known mean and variance.

• In pratice � and � are determined from the dataset using maximum likelihood
estimation.

• Eventually, we are able to predict, for any new parameters �:
 the expected value of the dose: � � ;
 the probability that the value of the dose is less than some threshold � with

respect to the uncertainty in the surrogate model:

� � = Prob �ü � ≤ � = Φ � − � �
� �
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Risk assessment methodology

Scalar-valued Gaussian process predictors (a.k.a. Kriging, cont’d)
• Ex : ℳ: � → � sin(�)

� � = Φ 0 − � �
� �

Dataset

Mean prediction

True function

95% Conf. Int.
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Risk assessment methodology

Dimension reduction using principal component analysis (PCA)
• We could apply kriging for all � and � over a spatio-temporal grid in order to 

surrogate the whole output of SLAM.

• But this would be heavy/long for dense grids (� × � × � = 50 × 50 × 71, for the 
present application)!

• It is proposed to exploit the significant spatio-temporal correlation (coherence) 
that exists in the output of SLAM for reducing its dimension to a minimal vector of 
principal components.

• The invertible linear mapping, known as the Karhunen-Loève transform, reads:
�: öℝ ↦ ℝ� → � = ���

, Cov � ≈ ���

where � (� × �) and � (� × �) are the matrices containing the eigenvalues and 
eigenvectors associated to the � ≪ � largest eigenvalues of the output 
covariance matrix.

• Kriging is then applied to each component of the reduced vector � instead of the 
original one (the inverse transform is used at predict time).
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Results

Monte Carlo experiment used for validation of the surrogate-based
approach (� = 1,000)

High performance 
computing resources 
are used to distribute 
the 1,000 SLAM runs 

(over 100 CPUs)
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Results

Design of experiments used for the surrogate modelling (subset
selection in the previous Monte Carlo experiment, � = 100)
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Results

Timewise surrogate modelling results (validation step)
• � is the number of principal components

(avg = 92, min = 79, max = 94)

• � is the regression coefficient estimated
by means of leave-one-out cross-validation
(avg = 0.65, min = 0.45, max = 0.92)*

• � (test) is the regression coefficient
estimated on the 900 other observations
in the Monte Carlo experiment
(avg = 0.58, min = 0.44, max = 0.90)*

• The average fitting time is 12 seconds.

• The average time to predict 10,000 points
is 25 seconds (which should be compared
to 10,000 runs × 10 minutes per SLAM run)

Time 
step

r << n
(n = 2,500) Q2 R2

(test)
Fitting time 

(s)

Time to 
predict
10,000 

points (s)
1 79 0.92 0.90 10.97 20.91
2 79 0.92 0.90 10.47 21.61
3 79 0.92 0.90 11.58 20.86
4 88 0.81 0.76 10.65 22.57
5 88 0.82 0.76 10.41 22.54
6 89 0.82 0.77 10.55 22.70
7 89 0.72 0.57 11.72 23.99
8 90 0.73 0.64 10.87 24.03
9 91 0.74 0.65 12.46 24.07
10 91 0.65 0.57 10.82 25.04

…

66 92 0.49 0.47 12.11 27.71
67 92 0.48 0.46 12.31 27.61
68 92 0.47 0.45 12.44 27.44
69 92 0.47 0.45 12.31 27.48
70 92 0.46 0.44 12.15 27.49
71 92 0.45 0.44 12.34 27.54

* The best regression coefficient is � = 1 (perfect match between the model and its surrogate).
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Results

Probability of exceeding the threshold dose of irreversible effects

• The surrogate-based approach accounts for the uncertainty in the kriging
predictor (Gaussian) :

�ü �, � = 1� ü 1 − Φ � − � �, �, �
� �, �, �

Brute-force approach
(� = 1,000)

Surrogate-based approach
(� = 10,000)
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Results

Risk map

• The probability of exceeding the threshold dose of irreversible effects is :
 less than 2.5 % in the green zone ;
 between 2.5 % and 97.5 % in the orange zone ;
 larger than 97.5 % in the red zone.

Brute-force approach
(� = 1,000)

Surrogate-based approach
(� = 10,000)
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Results

Risk map (with different emitted quantity distributions)

• An arbitrarily large emitted quantity distribution was first used for reaching the 
threshold of irreversible effects in the far field.

• A smaller emitted quantity distribution eventually augments the spread of the 
uncertain (orange) zone.

� ∼ � 70 kg. s; 130 kg. s � ∼ � 7 kg. s; 13 kg. s
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Conclusion

Probabilistic modelling is used to describe uncertain release 
conditions.

Risk is assessed as the probability of exceeding a critical dose.

Surrogate modelling enables a drastic speed-up in the production of 
risk maps :

• provided the CFD database is already computed (for industrial sites at risk) ;
• 20 minutes per SLAM run in the DOE (× 100 runs, but × using HPC) ;
• about 12 seconds per time step for fitting the kriging predictors ;
• about 25 seconds per time step to predict the 10,000 configurations required for 

the final probability estimation.

Kriging is a convenient surrogate for incorporating the uncertainty 
about the surrogate model in the final risk maps.

Risk can be represented as time-varying maps of dose exceedance
probabilities.


