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Introduction

@ High fidehty atmospheric dispersion modelling...

© ... increasingly depends on our knowledge of the exact
environmental conditions.

@ Such conditions are unknown to some extent, especially in
the case of accidental releases.

We propose a risk assessment framework that accounts for
such uncertainty in the form of probability distributions.
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Outline

@ Dispersion modelling in the presence of uncertainty
» Dispersion modelling
* Uncertainty modelling
* Quantity of interest for risk assessment

@ Risk assessment methodology for urgent situations
» Brute-force approach
» Elements of surrogate modelling
» Scalar-valued Gaussian process predictors
* Dimension reduction using principal component analysis

1 Results
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Outline

@ Dispersion modelling in the presence of uncertainty

Uncertainty treatment in
dispersion modelling

Dispersion modelling
Uncertainty modelling
Quantity of interest for risk assessment
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Dispersion & uncertainty modelling

@ Dispersion modelling
 The exact source location is supposedly known.

« The release starts on March 13t 2011 at 06:35:00 and ends at 06:40:00.

« Meteorological conditions (wind speed, direction, etc. ...) are uncertain
(imprecise).

Source
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Dispersion & uncertainty modelling

@ Dispersion modelling
A Lagrangian model (SLAM) is used for simulating the dispersion of the
pollutant (assuming a light gas behaviour).

A pre-computed CFD database enables the calculation of the perturbed
wind field in the constructed area in the vicinity of the source for a large
variety of incident winds (using multi-linear interpolation).

Concenfration (kg/m3)
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Dispersion & uncertainty modelling

@ Uncertainty modelling

« The lack of knowledge about some parameters describing the release conditions
is modelled as a probability distribution.

» These variables are assumed independent in a first simplified approach.

[Concentration (kg/m?3)
002

0.01

0.001

Parameter Probability distribution

0.0001

. . p L
Wind speed Gaussian with meané;r;.in Sa_:wd standard deviation F o

Truncated Gaussian with mean 225° and standard

Wind direction deviation 22.15°, over [215°; 234°]

Cloud cover Truncated (.Sa-ussian with mean 6 octas and - Concentraion (kg/m3)
standard deviation 1 octa, over [1 octa; 9 octas] 001
Temperature Uniform over [14°C; 16°C]
Emitted quantity Uniform over [70 kg.s™'; 130 kg.s™"]
Source height Uniform over [1.75 m; 2,25 m]
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Dispersion & uncertainty modelling

@ Quantity of interest for risk assessment

« We consider the cumulated dose causing irreversible effects on human health
according to INERIS recommandations for phosphine :

DED,D,DF=UDED,D,DFdD

where :
= [] denotes the random vector of uncertain release conditions
» ] and [ are the position and exposure time respectively
= []is the instant phosphine concentration calculated by SLAM
= []=0.53 according to INERIS
* The subject is assumed not to move during exposure.
* The risk analysis consists in estimating:

1 =Probx[EL, [, [F > [z

where [ = 20.10 according to INERIS.
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Outline

@ Risk assessment methodology for urgent situations

Uncertainty treatment in
dispersion modelling

Brute-force approach

Elements of surrogate modelling

Scalar-valued Gaussian process predictors

Dimension reduction using principal component analysis
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Risk assessment methodology

@ Brute-force approach
» The spatio-temporal field of exceedance probabilities can be estimated using
Monte Carlo sampling :
HED,DF= &UDEDED,D,DF> LIF

« This estimator converges as the number of samples (the number of SLAM runs)
increases.

« Convergence is measuregd in terms of its coefficient of variation:
= UVarx 1, O0Fz=01-LEL, [
O XU E Fz=10 DDEFD,DFF
H ELLLUF

* Hence, a minimum of 10 000 samples is required in order to achieve a
reasonable coefficient of variation of 32% on a probability of 10-3,

Such a large number of SLAM runs is incompatible with the urgency
associated to accidental releases scenavii.
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Risk assessment methodology

We propose to replace SLAM by a surrogate model
that is much faster to evaluate.

©  Elements of surrogate modelling

- Run the model M on a well-chosen set of input (gathered in an experimental design).
DOE - The purpose is to capture the largest amount of information about the functional
relationship between its input x and output y.

¥

- Choose a family of surrogate models amongst artificial neural networks (ANN), support
fit vector machine (SVM), Gaussian processes (GP), generalized linear models (LM).

- Compute the surrogate model parameters from the datasetD = ((x(i),y(i)),i =1, m)

¥

- Compute summary statistics about the relative error between the original model and its

validate | approximation.
- The purpose is to qualify the surrogate model on a bounded domain of the input space.

¥

- Use the surrogate model instead of the original model to speed up uncertainty

predict | quantification
or to optimize post-processings.
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Risk assessment methodology

@ Scalar-valued Gaussian process predictors (a.k.a. Kriging)

Uncertainty treatment in
dispersion modelling

Assume we want to predict the dose [1 = [1 E[], [JF for some fixed point [ and
time L1, but for any parameters value [.

Kriging is a Bayesian prediction technigue that starts from the following Gaussian
process prior model:

OEOF=0EOFTO+ OELF
where:
= [JEOF T is the trend expressed as a linear model;
= [ ELIF is a zero-mean stationary Gaussian process with covariance function:
O, JF=L0EOL -0, LF

Hence, the observations [ in the dataset [] and some unobserved value [1E[F
we would like to predict are jointly distributed as follows:

- JEOF (0,0
Erg FF U EE EFOF X T E (1 )zF
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Risk assessment methodology

@ Scalar-valued Gaussian process predictors (a.k.a. Kriging, cont'd)

» Kriging exploits the non-zero cross-correlation term (L1, [1) in order to predict
the unobserved value given the observations:

HEDF=XDEDF | O=g0,0=1,...,0F,], 1z

* This conditional distribution remains Gaussian:

YECF - OEUECF, DECFF
with known mean and variance.

* In pratice "1 and [ are determined from the dataset using maximum likelihood
estimation.

« Eventually, we are able to predict, for any new parameters [1:
= the expected value of the dose: [ ELF;

= the probability that the value of the dose is less than some threshold [ with
respect to the uncertainty in the surrogate model:

= < - —_
“EOF =Probx" ECF < [z = O gl - JELFE
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Risk assessment methodology

@ Scalar-valued Gaussian process predictors (a.k.a. Kriging, cont'd)
e Ex:M:(1— [1sin{l)

15 ' '
| True function
T ° Dataset
- 2
| —— Mean prediction
-10} ] 95% Conf. Int.
_15 1 1 1 1 L L L
1.00 -
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S 0.60 | 1 EOF=0g0-1EF
g EXEOF F
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Risk assessment methodology

@ Dimension reduction using principal component analysis (PCA)

Uncertainty treatment in
dispersion modelling

We could apply kriging for all ©1 and [ over a spatio-temporal grid in order to
surrogate the whole output of SLAM.

But this would be heavy/long for dense grids ([J x [1 x [1 =50 x 50 x 71, for the
present application)!

It is proposed to exploit the significant spatio-temporal correlation (coherence)
that exists in the output of SLAM for reducing its dimension to a minimal vector of
principal components.

The invertible linear mapping, known as the Karhunen-Loéve transform, reads:

gk » R , Covxl[lz= [][][]
- =100

where [ ([J x [J) and [J ([J x []) are the matrices containing the eigenvalues and
eigenvectors associated to the [1 < [ largest eigenvalues of the output
covariance matrix.

Kriging is then applied to each component of the reduced vector [] instead of the
original one (the inverse transform is used at predict time).
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©l Results
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Results

@ Monte Carlo experiment used for validation of the surrogate-based
approach (= 1,000)

High performance
computing resources
are used to distribute
the 1,000 SLAM runs

(over 100 CPUs)
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Results

@ Design of experiments used for the surrogate modelling (subset
selection in the previous Monte Carlo experiment, | = 100)
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Results

@ Timewise surrogate modelling results (validation step)

» [1is the number of principal components

. Time to
(aVQ = 92, min = 79, max = 94) Time r<<n 2 R2 Fitting time predict
step | (n=2,500) Q (test) (s) 10,000
points (s)
» [ is the regression coefficient estimated L 7 10921 080 | 1007 2091
: . 2 79 092 ] 0.90 10.47 21.61
by mcians of Ie_an-one-out crczss-vall*datmn 3 s Tosm | om0 | 15 2086
(avg = 0.65, min = 0.45, max = 0.92) 4 88 | 081 | 076 10.65 22,51
5 88 0.82 0.76 10.41 22.54
. . .. 6 89 082 | 0.77 10.55 22.70
« O (jtest) is the regression coefficient . 2o lon| oz | 1w 23.99
estimated on the 900 other observations 8 90 |o73| 064 | 1087 24.03
in the Monte Carlo experiment 9 91 |074] 065 | 1246 24.07
(avg = 0.58, min = 0.44, max = 0.90)* 10 St 108 ] 057 ] 1082 2504
» The average fitting time is 12 seconds. 66 92 10491 047 | 1211 2171
67 92 0.48 0.46 12.31 27.61
68 92 0.47 0.45 12.44 27.44
« The average time to predict 10,000 points 69 92 10471 04 1231 2748
is 25 seconds (which should be compared 0 o2 10464 040 4 12D | 278
71 92 0.45 0.44 12.34 27.54

to 10,000 runs x 10 minutes per SLAM run)

* The best regression coefficient is [1 = 1 (perfect match between the model and its surrogate).

Uncertainty treatment in
dispersion modelling
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Results

@ Probability of exceeding the threshold dose of irreversible effects

900 1 900

850 850

{1e-01 le-01
800 - 800
Lv_l
'J'..‘
= E =
750 & 750

H1le-02

700 700

65950 600 650 ‘ 700 750 103 65gSO 600 650 _ 700 750 800 1e03
Brute-force approach Surrogate-based approach
(0 =1,000) (0 =10,000)

» The surrogate-based approach accounts for the uncertainty in the kriging
predictor (Gaussian) :

= . - O =0EL, [, []
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Results

E

Risk map

SEl location at 95% confidence SEl location at 95% confidence

900 900

850 850

800

800

750

750

700 700

65gSO 650 ; 700 750 65g50 600 650 . 700 750
Brute-force approach Surrogate-based approach
(0 =1,000) (0 =10,000)

» The probability of exceeding the threshold dose of irreversible effects is :
= |ess than 2.5 % in the green zone ;
= between 2.5 % and 97.5 % in the orange zone ;
= |arger than 97.5 % in the red zone.
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Results

@ Risk map (with different emitted quantity distributions)

- SEl location at 95% confidence 900 SEl location at 95% confidence

850 850

800 800

750 750

700 700

65?50 650 700 750 65gSO 650 700 750

1~ [0 Ex70 kg.s; 130 kg. szF L1~ [ EXT Kkg.s; 13 Kg. szF

» An arbitrarily large emitted quantity distribution was first used for reaching the
threshold of irreversible effects in the far field.

+ A smaller emitted quantity distribution eventually augments the spread of the
uncertain (orange) zone.
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Conclusion

@ Probabilistic modelling is used to describe uncertain release
conditions.

@ Risk is assessed as the probability of exceeding a critical dose.

@ Surrogate modelling enables a drastic speed-up in the production of
risk maps :
« provided the CFD database is already computed (for industrial sites at risk) ;
« 20 minutes per SLAM run in the DOE (% 100 runs, but x using HPC) ;
« about 12 seconds per time step for fitting the kriging predictors ;

« about 25 seconds per time step to predict the 10,000 configurations required for
the final probability estimation.

@ Kriging is a convenient surrogate for incorporating the uncertainty
about the surrogate model in the final risk maps.

@ Risk can be represented as time-varying maps of dose exceedance
probabilities.
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