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INTRODUCTION
Prompt estimation of the atmospheric dispersion characteristics of

 

 
hazardous materials following a release over an industrial site is of

 

 
crucial importance for the emergency responders. Quick, yet accurate 
predictions of the contaminated area are required. 
parameters:
• the real time wind field 
• building topography
• composition-decay characteristics of the initially emitted species. 
The aim is to provide emergency responders with sufficiently accurate 
and rapid data in order to allow them to decide the emergency measures 
to be taken 
The location is an industrial site near the city of Bourges in France. 
The release scenario is a pool fire of ethanol of 100 m2

 

area. 
The duration of release is taken equal to 1 hour. 
QUIC

 

(Pardyjak and Brown 2001) atmospheric dispersion modeling

 

 
system is used.

CHEMICAL KINETICS OF AN ETHANOL POOL FIRE
parameters:
• equivalence ratio of 4
• pressure is 1 atm.
• the temperature of the flame is 1400K (Weckman and Strong )

Thomas empirical correlation (Rew et. al. 1997) gives the size of the 
reaction zone as:

(1)

-

 

L is the flame height, is computed to be 0.08 m for a 0.073 m2

 

pool 
- ρa

 

is the density of air at ambient conditions (kg.m-3)
- g is the gravitational acceleration (m s-2)
- D is the pool diameter (m) 
-

 

m' the mass burning rate of fuel is taken to be 0.020 kg.m-2.s-1

 

for 
ethanol. 

CHEMKIN-PSR

 

(Glarborg et al. 2011) model with Dagaut (1992)

 

 
mechanism used for kinetic simulations (Table). 
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DECAY RATES
The atmospheric degradation rates of the products of ethanol fire are

 

 
necessary for modelling their atmospheric dispersion. 
The photochemical oxidation rate coefficients for the reaction with OH 
radicals ( and NO3

 

radicals and ozone reactions for 1-butene) are taken 
from IUPAC database.
The atmospheric lifetimes of the released compounds are given by

(2)

-

 

kOH

 

are the bimolecular rate constants for the reaction of OH radicals 
with the compounds 
-

 

cOH

 

is the OH concentration that is taken as 2x106  and 0.5x106 

(molecules/cm3) during daytime and night time, respectively (Lu & 
Khalil, 1992). 
In the case of 1-butene:

 

(3)

where cNO3

 

= 0-5x108

 

(molecules/cm3) and cO3

 

= 1x1012-2x1011 

(molecules/cm3) during daytime and night time, respectively (Geyer

 

 
2000; Pudasainee et al., 2006). 
1-butene has the shortest lifetime: 210 minutes (daytime). 
Toluene is more stable with its shortest lifetime equal to 1200 min.

Figure 1.

 

Diurnal and Nocturnal temperature and wind velocity (10 m height) at 15th of each month for 2012.

Figure 2. Diurnal and Nocturnal decay rates (cm3 molecule-1 s-1) for 15th of each month in 2012.
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Figure 4.

 

QUIC dispersion model results of 1toluene dispersion 

(June 15th

 

2012 day (left) and night (right).
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Figure 3. QUIC dispersion model results of 1-butene (left) and toluene (right) dispersion 

(September 15th

 

2012 night).
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ATMOSPHERIC DATA
The mesoscale atmospheric flow model WRF

 

is used for atmospheric 
conditions at 15th of each month for the year 2012 (Skamarock et

 

al. 
2008) for the Bourges area using the Research Data Archive at the 
National Center for Atmospheric Research (Figure 1). 

Products Mole fractions Safety
Carbon monoxide (CO) 0.16508 Flammable, toxic gas
Hydrogen (H2) 0.16321 Extremely explosive and flammable gas
Water (H2O) 1.54 E-01 No toxicity
Methane (CH4) 3.94 E-02 Highly flammable gas, simple asphyxiant
Carbon dioxide (CO2) 2.27 E-02 Asphyxiant, not toxic gas
Acetylene (C2H2) 1.70 E-02 Flammable gas
Ethylene (C2H4) 1.19 E-02 Flammable gas
Oxygen (O2) 2.77 E-03 May cause or intensify fire
Benzene (C6H6) 6.59 E-04 Flammable, toxic gas
Ethane (C2H6) 4.14 E-04 Highly flammable gas, simple asphyxiant
Ethanol (C2H6O) 3.38 E-04 Highly flammable
Toluene (C7H8) 3.16 E-04 Flammable, toxic gas
1-butene (C4H8) 1.67 E-04 Flammable gas, simple asphyxiant, toxic.
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CONCLUSIONS
•

 

QUIC atmospheric dispersion modeling system has been successfully

 

 
used to estimate the dispersion characteristics of an ethanol pool fire over 
an urban area with the inclusion of atmospheric chemistry models
•

 

The knowledge of the wind field is of crucial importance for the correct 
evaluation of the dispersion parameters
•

 

The importance of the chemical species atmospheric degradation rates 
depends on the size of the considered area and the degradation lifetimes
•

 

This preliminary study will be extended to real case accidents where 
several release scenarios will be considered for the specific compounds 
stored in the investigated industrial sites.
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