Operational validation of SILAM model in differently inhabited areas

Ketlin Reis, Marko Kaasik
University of Tartu, Estonia

Veljo Kimmel
Estonian University of Life sciences
Estonian pre-operational SILAM model application in „Eastern Baltic“ domain: how reliable it is?

- NOx, SO₂, PM10, M2.5
- 3.3 km resolution
- driven by HIRLAM (Estonia)
- boundary fields of pollutants – SILAM (Finland)
- meteo boundaries – ECMWF

Emission data:
- in Estonia – national, 0.5 – 1 km resolution
- outside – TNO MACC, 7 km
Validated so far

- Urban peak concentrations represented rather well.
- Urban averages underestimated.
- Background NOx rather well.
- Summertime PM underestimated (no wind-blown dust).
Validated
so far

6 urban stations and 3 rural background stations non-uniformly distributed – not enough for good validation!
Two-week series in 2012:
(26 sites)
• 13.02 – 26.02
• 14.05 – 27.05
• 27.08 – 09.09
• 19.11 – 03.12

Average concentrations
How the classification performs?

Population density in 3x3 km cells vs. subjective urban – rural classes.

$R^2 = 0.8505$

Population density per km² vs. Urban – rural (subjective) index.
Results: measured vs. modelled
Results: measured vs. modelled

\[y = -0.0026x^2 + 0.3202x + 1.2788 \]

\[R^2 = 0.3813 \]

NO\textsubscript{2}

<table>
<thead>
<tr>
<th>Measured concentration, (\mu g m^{-3})</th>
<th>Modelled concentration, (\mu g m^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.02 – 26.02</td>
<td></td>
</tr>
<tr>
<td>14.05 – 27.05</td>
<td></td>
</tr>
<tr>
<td>27.08 – 09.09</td>
<td></td>
</tr>
<tr>
<td>19.11 – 03.12</td>
<td></td>
</tr>
</tbody>
</table>
Results: measured vs. modelled

SO$_2$

Measured concentration, μgm$^{-3}$

Modelled concentration, μgm$^{-3}$

- 13.02 – 26.02
- 14.05 – 27.05
- 27.08 – 09.09
- 19.11 – 03.12
Results: concentrations vs. population density

NO$_2$ measured

- **13.02 - 26.02**
 - $y = 0.0024x + 5.6104$
 - $R^2 = 0.5572$

- **14.05 - 27.05**
 - $y = 0.0023x + 1.9818$
 - $R^2 = 0.6202$

- **27.08 - 09.09**
 - $y = 0.0019x + 1.9139$
 - $R^2 = 0.6673$

- **19.11 - 03.12**
 - $y = 0.0018x + 5.8834$
 - $R^2 = 0.2540$
Results: concentrations vs. population density

NO₂ modelled

- **13.02 - 26.02**
 - $y = 0.0003x + 3.8373$
 - $R^2 = 0.2127$

- **14.05 - 27.05**
 - $y = 0.0008x + 0.7968$
 - $R^2 = 0.5441$

- **27.08 - 09.09**
 - $y = 0.0002x + 1.0843$
 - $R^2 = 0.5287$

- **19.11 - 03.12**
 - $y = 0.0002x + 3.8228$
 - $R^2 = 0.0299$
Other results

- No substantial dependence of SO₂ concentrations on urbanisation/population density – expected.
- Black carbon constitutes only a small fraction of PM2.5 or PM10, but is considerably correlated with modelled PM2.5: correlations 0.2 – 0.6 (nearly as modelled – measured PM in monitoring stations).
- Site-wise modelled – measured correlations of NO₂ and SO₂ are substantial in summer, but don’t exist in winter:

<table>
<thead>
<tr>
<th>Campaign, 2012</th>
<th>NO₂</th>
<th>SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.02 – 26.02</td>
<td>0.09</td>
<td>-0.07</td>
</tr>
<tr>
<td>14.05 – 27.05</td>
<td>0.78</td>
<td>0.39</td>
</tr>
<tr>
<td>27.08 – 09.09</td>
<td>0.68</td>
<td>0.53</td>
</tr>
<tr>
<td>19.11 – 03.12</td>
<td>0.46</td>
<td>-0.10</td>
</tr>
</tbody>
</table>
Conclusions

• Estonian application of SILAM tends to “smooth out” the urban-rural differences – urban emissions underestimated?
• Urban peak levels have been reproduced fairly – is the diurnal cycle of emissions (and perhaps dispersion conditions) overestimated?
• Grid cell resolution (3.3 km) may be still critical for small towns.
Acknowledgements

Estonian Research Council, Targeted Financing Project SF0180038s08 and research grant 8795

EU Regional Development Fund, Environmental Conservation and Environmental Technology R&D Programme project BioAtmos (3.2.0802.11-0043)

Thank You!

GLOBE Estonia

PASODOBLE/MyAir

Estonian Environmental Research Centre (EERC)

Mikhail Sofiev, Marje Prank (FMI)

Erik Teinemaa, Ülis Sõukand (EERC)