Modelling wet deposition with high resolution precipitation data

Helen Webster, David Thomson and Andrew Jones
Met Office, UK
Outline

• Wet deposition
• Modelling of wet deposition in NAME
• Advances in NWP data
• Compatibility of wet deposition schemes and high resolution precipitation data
• Closing thoughts
Wet deposition

- Removal of material from the atmosphere within precipitation elements
 - Often the dominant loss process
 - Includes below-cloud (washout) and in-cloud (rainout) scavenging
- Dependencies
 - Precipitation
 - amount, droplet size, type (rain, snow, etc.), intensity
 - Scavenged material
 - gases: solubility
 - aerosols: particle size, hydrophobic (water hating) / hydrophilic (water loving)
NAME (Numerical Atmospheric-dispersion Modelling Environment)

- UK Met Office’s Lagrangian dispersion model
 - Uses NWP 3-d flow fields or single site observations
 - Loss processes: radioactive decay, wet & dry deposition, chemical transformations
- Wide range of applications
 - Emergency response: chemical, biological and nuclear
 - Air quality: forecasts and episode analysis
 - Disease spread (foot and mouth, bluetongue)
 - Identifying source locations and strengths
 - Volcanic ash
 - Dust forecasts
 - Policy support
NAME’s wet deposition scheme

- More than 20 years old
- Uses a bulk parameterisation
 - Λ is the scavenging coefficient ($\Lambda=Ar^B$)
- Assumes input precipitation data (r) has two components
 - dynamic / large-scale (resolved by NWP model)
 - convective (parametrised within NWP model)
- Different scavenging parameters (A and B) for
 - rain / snow and ice
 - convective / dynamic precipitation
 - in-cloud / below-cloud scavenging
- Total wet deposition given by sum of wet deposition by dynamic and convective components

\[\frac{dC}{dt} = -\Lambda C \]
Numerical Weather Prediction (NWP) input data

- gridded model data
- full 3-d structure
- advances in computing and science
 - increases in resolution
 - improvements in accuracy
 - large volumes of data
 - data storage / transfer issues
 - increased computing power / model run time
Current Met Office NWP models

- Global
 - 25 km horizontal resolution
 - dynamic (resolved) and convective (parameterised) precipitation
 - 3 hourly time resolution
 - height ~80 km
 - 144 hour forecast

- UKV
 - UK region
 - 1.5 km horizontal resolution
 - convection permitting
 - hourly time resolution
 - height ~40 km
 - 36 hour forecast
NAME’s wet deposition parametrisation

- NWP precipitation data
 - dynamic / large-scale – resolved
 - convective – parametrised
- UKV precipitation
 - dynamic + convective – resolved
 - no parametrised

- Wet deposition scheme
 - different parametrisation for scavenging by dynamic (resolved) and convective (parametrised)
 - resolved convective precipitation uses dynamic parametrisation!
 - predicted wet deposition dependent on ratio of resolved precipitation to parametrised precipitation!

► modifications to wet deposition scheme
Remove dynamic / convective difference

Calculate a total scavenging coefficient (Λ_{tot})

$$\Lambda_{tot} = \left(1 - C_f\right) A_1 r_{dy}^{B_1} + C_f A_2 \left(r_{dy} + \frac{r_{con}}{C_f}\right)^{B_2}$$

time-step independent
Rain hopping – instantaneous precipitation fields

- 3 hourly instantaneous fields
- Thin band of precipitation (front)
- Precipitation (as seen by the dispersion model) appears to hop from one location to another
- Problem caused by mismatch between high spatial resolution and comparatively low temporal resolution
Rain hopping – instantaneous precipitation fields

Precipitation

Wet deposition

© Crown copyright Met Office
Instantaneous vs mean precipitation

![Instantaneous precipitation map](image1)

![Mean precipitation map](image2)

© Crown copyright Met Office
Wet deposition – instantaneous vs mean precipitation

Instantaneous

Mean
Summary

• Advances in NWP
 • advances in dispersion modelling capability
 • improved accuracy
 • dispersion modelling challenges
 • data volume
 • revisions to modelling approaches

• Highlights
 • Regular reviewing of model parametrisations is good practice
 • Helpful to have an understanding of the model parametrisations
 • Importance of model testing when using new input data sets