A Model for Buoyant Puff Dispersion in Urban Areas

S. Herring1, D. Hall2 and A. Spanton2

1Dstl, 2Envirobods Ltd.

Contact: sjherring@dstl.gov.uk
Introduction

• The Urban Dispersion Model (UDM) was developed to satisfy an MOD requirement for prediction of toxic contaminants in urban areas from 10 m to 10 km.

• A Gaussian puff model combined with wind tunnel data approach was adopted to:
 – Provide **rapid** predictions of urban dispersion;
 – Enable a wide variety of releases to be simulated: instantaneous, continuous, static or moving.
Introduction

• UDM is a component of the Hazard Prediction and Assessment Capability, and has been continuously developed to handle a wider range of sources.

• A first-order buoyant puff model has now been developed.

• The model enables UDM to predict the dispersion of material with significant buoyancy resulting from:
 – The density of the material;
 – Heat input.
Basis of Model

• A literature review by Hall and Spanton showed:
 – No simple model existed for predicting the buoyant rise of puffs of arbitrary size and shape;
 – There was no data from systematic experiments on buoyant puff-rise;
 – There was no data on the dispersion of buoyant puffs or plumes within or just above the urban canopy.
• They concluded a model could be developed from theory relating to atmospheric thermals in still air\(^1\).

\(^1\)Developed by Csanady (1973), Turner (1973), Scorer (1978) and Fannelop (1994).
Model Assumptions

• The first-order approach assumes the following:
 – There is no initial energy apart from the buoyancy;
 – The Boussinesq approximation holds;
 – The puff forms are self-similar at all heights;
 – There is no initial vertical acceleration of the puff;
 – The source of buoyancy is preserved;
 – The rate of lateral spreading is equal across both coordinates of the puff.
Puff-rise in Open Terrain

- The model predicts puff spread (σ) and vertical velocity (w).
- Puff shapes are assumed to vary linearly between the extremes of axisymmetric and line forms:

 \[
 \text{Axisymmetric puff : } \frac{\sigma_x}{\sigma_y} = 1 \quad \text{, line puff : } \frac{\sigma_x}{\sigma_y} < 0.1 \quad \text{or} \quad \frac{\sigma_x}{\sigma_y} > 10
 \]

- The puff spread is given by:

 \[
 \frac{d\sigma}{dz} = F(\alpha) \quad \text{where } F(\alpha) \text{depends upon the puff shape}
 \]
Puff-rise in Open Terrain

• The buoyancy forces for axisymmetric and line thermals are F_0 and F_L respectively:

$$F_0 = \frac{g}{\pi} \frac{\Delta \rho}{\rho} V \quad \text{and} \quad F_L = \frac{g}{\pi} \frac{\Delta \rho}{\rho} V$$

where ρ is density and internal volume V depends upon puff shape.

• The vertical velocity is given by:

$$w = C \left(g \frac{\Delta \rho}{\rho_0} R \right)^{0.5} \quad \text{where} \ C \ \text{is a constant and} \ R \ \text{the lateral spread}$$
Puff-rise in Open Terrain

- The common form for all puffs derived by Hall and Spanton is:

\[w = F(\beta) \left(\frac{F(\gamma)Q}{\sigma_x \sigma_y} \right) \]

- \(F(\beta) \) = constant depending on puff shape,
- \(F(\gamma) \) = volume scale factor = \(\frac{0.74 \min(\sigma_x, \sigma_y)}{\sigma_z} \)
- \(Q \) = initial heat release in MJ, and \(F_0 = 8.9Q \)
Merging Buoyant Puff-rise with Dispersion by Turbulence

• UDM merges turbulence and array dispersion components by summing in quadrature:

\[\sigma_{total}^2 = \sigma_{turbulence}^2 + \sigma_{array}^2 \]

• The interaction between buoyant puff-rise and spread by turbulent dispersion is accounted for by using:

\[\sigma(t + \Delta t) = \sigma(t) + \left(\Delta\sigma_b^2 + \Delta\sigma_{total}^2 \right)^{0.5} \]
Example output

Rapid rise initially

Axisymmetric Line

Heat release, $Q = 10$ MJ
Windspeed at 10m = 2 m s$^{-1}$
$z_0 = 0.3$ m
Source area = 10 m2
Over-lapping puffs

- When puffs over-lap during simulations, their varying densities must be accounted for.
- Buoyancy enhancement is assumed proportional to the additional concentration of over-lapping puffs.
- Puff buoyancy is enhanced by the factor $F(\delta)$:

$$F(\delta) = \frac{C_{\text{total}}}{C_{\text{max}}}$$

Where C_{total} is total cumulative concentration at the puff centre, and C_{max} the concentration at the puff centre.
Interaction with Isolated Obstacles

- Experiments on plumes by Hall et al. have shown that buoyant plumes will lift-off:

Neutral buoyancy

High buoyancy
Interaction with Isolated Obstacles

- Interactions are accounted for by development of the puff partitioning in UDM to incorporate buoyant puffs:
Conclusions

- A simple first-order model has been developed for thermal plume and buoyant puff-rise:
 - Its behaviour is in accordance with observations;
 - It integrates the prediction of buoyant puff-rise with dispersion due to turbulence;
 - It accounts for changes in puff-rise velocity due to changes in puff depth and over-lapping puffs;
 - It models interactions with urban arrays and obstacles.
Questions?