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Abstract: Air quality models are complex systems, which are challenging to run. In the future, complexity of air quality models will rise: 
more computing power offers the possibility of a higher amount of output, which in turn complicates data analysis. In the light of this, the 
traditional triad of pre-processing, simulation, post-processing must be rethought. An enhanced approach is to break up the sequential 
structure of this process, allowing for parallel processing. This can lead to a significant speedup of model runs and a more efficient use of 
computer resources. 
Modular modelling systems, such as the Comprehensive Air quality Model with extensions (CAMx [ENVIRON, 2008]) offer various model 
setups for each model run. This creates a large number of possible permutations of settings and input data and stresses the need for automatic 
pre- and post-processing. If manual steps are involved in running a model system, reproducibility is hindered, on the one hand because of 
operator errors, on the other hand because of missing documentation of these manual steps. 
CAMxRunner is a modular, extensible suite of bash scripts that automates whole model runs including pre- and post-processing and supports 
both sequential as well as parallel approaches. It was written with CAMx as a target platform, but it is general enough to support other 
models. 
A run is controlled by a configuration file and eliminates manual steps. This approach is an important step towards efficient model runs. 
The system keeps track of steps already executed, so runs can be suspended and resumed later. 
Since the outcome of a model run critically depends on the programs used, CAMxRunner includes capabilities to manage different versions 
of all binaries needed. This includes a separation of different model versions and their support program as well as the separation of different 
compiler options (for example to support different platforms). 
Especially for longer model runs, the use of CAMxRunner reduces the workload on the modeller but also assists the interpretation of the 
results by fully documenting each run in a configuration file. 
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INTRODUCTION 
Reproducibility is an important challenge for modellers across all scientific disciplines, mostly because it is easy to change 
the setup and the source code of a model, but hard to document these changes. We propose a new approach to modelling in 
general and air quality modelling with CAMx in particular and implemented these ideas in a complete end-to-end modelling 
system. 
The reasons why it is often difficult to reproduce model runs, especially those by other groups are manifold: be it custom 
modifications to model code, special treatment of input data or simply undisclosed options. We believe that the current state 
approach to modelling harms the reputation of the whole community, because the ability to reproduce results of others is a 
central aspect of the scientific method. 
CAMxRunner is a modelling system that initially grew out of the need to reduce as many manual steps as possible. 
Gradually, it became a full-fledged environment for modelling with CAMx. Even though it was designed to be used for 
CAMx, it is flexible enough to support other models – an implementation to support the meteorological model WRF 
(Weather Research and Forecasting) [Michalakes et al., 2004] is planned in the near future.  
 
Other authors, including [Schwab et al., 2000] proposed similar solutions to the issue of reproducible model output. The 
approach by Schwab et al. is based on the Unix tool Make which is powerful but not user-friendly. Also, they did not 
consider the modelling system as a whole, so they do not address the management of the binaries and modifications thereof. 
 
CAMxRunner is (in our opinion) a user-friendly tool that can manage the whole “lifecycle” of model data, from the 
generation of the input data to the production of plots. 
 
We have used CAMxRunner for our day-to-day modelling needs as well as to allow beginners to use CAMx, which 
dramatically reduced the learning curve. 
 
IMPLEMENTATION 
CAMxRunner was written in Bash (>= 3.x) because CAMx is normally run using C-shell scripts, but C-shell does not offer 
support for functions. This should enable CAMx users to understand the code quickly and be able to change it to specific 
needs. 
It was an important design goal that the system is modular and extensible, especially since CAMx is modular as well and pre- 
as well as postprocessing depends on the modules that are currently in use. 
 
The system is built on a simple directory structure that is based on the distinction of modules for different models and their 
versions. 
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Figure 1: The directory structure of CAMxRunner 
 
In Figure  above, you can see that the subdirectory combination CAMx/4.42, 4.51 and 5.10 occurs in many different places to 
separate modules (these are bash-wrappers to call the binaries) and other components of the system. 
To introduce a new model like WRF, the respective directories need to be created (the system can do this automatically) and 
be filled with the relevant modules by the user. 
Templates for modules (in the templates/ directory) give users a head start for the further development of CAMxRunner. 
 
A modelling system consists of many different binaries (pre- and postprocessors and the model itself), which poses some 
special problems if the same system should be used by different hardware platforms. At the Paul Scherrer Institut, we use the 
Andrew File System (AFS), a network filesystem to store our data centrally for all servers. Therefore CAMxRunner keeps 
binaries for different platforms separated, to avoid this issue. This is achieved using a logical naming convention that allows 
to infer the platform for which a binary was compiled. 
 
In contrast to the “jobfiles” that ENVIRON supplies with CAMx, CAMxRunner strictly separates configuration data from 
code to run the model. In addition to this, it fully integrates pre- and postprocessing, so that at the end of a run, one is left 
with completely processed data, whatever postprocessing there is needed. That way, a CAMxRunner configuration file 
contains all settings relevant for the model run in question.  
Often, configuration items (say, an input file path) depends on runtime data, such as the day currently simulated. To account 
for this, CAMxRunner offers so-called file-rules, which are arbitrary strings that may contain variables that are resolved at 
runtime. The system incorporates a multitude of variables (mainly date-related) that can be used in such rules. For example 
the rule '$CXR_INPUT_DIR/tuv_$CXR_CAMX_CUSTOMER_winter$CXR_YEAR_S_week_CXR_WOY.out' is resolved to 
/inputs/tuv_bafu_winter_06_week_1.out when simulating week 1 of winter 2006 for customer bafu. 
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Due to its modular architecture, it is straightforward to add new processing modules, be it for pre- or postprocessing. Since 
CAMxRunner normally runs non-interactively for obvious reasons, the only requirement for such a module is that it can be 
run without user intervention and does not for example require a graphical user interface. 
Since model runs depend on many input files, there is the possibility of them changing without the modeller’s knowledge, 
especially if a whole team provides input data. To account for this, CAMxRunner keeps a database of checksums (MD5 
hashes [Rivest, 1992]) which allows to detect even single bit changes of files. 
 
Another important design goal was to make full use of modern multi-core shared memory systems. The CAMx model itself 
already employs OpenMP [Dagum et al., 1998] to exploit such systems optimally, but most pre- and postprocessors still use 
only a single core. To that end, CAMxRunner can resolve the dependencies of pre- and postprocessors which can then be 
executed in the proper order in parallel. This not only uses the computing system in a sustainable matter, but also reduces the 
total elapsed time required for a run. 
 
To be able to infer the correct order to execute the tasks of a run, and to know which tasks are independent, reasoning on the 
dependency graph is needed. 

 
Figure 2: A sample dependency graph of a two-day run 

 
Figure  2 shows an example of such a graph: nodes represent tasks (“create_emissions_2” is the task that creates emissions 
for the second modelling day) and arrows (edges) mean “depends on”. In our example, the tasks ahomap, initial_conditions, 
create_emissions_1 and _2, boundary_conditions_1 and _2 are independent of all other tasks and could be run in parallel 
first. Two approaches to determine if tasks are independent, include looking at the adjacency matrix  of the graph and sorting 
the graphs nodes topologically [Chartrand and Zhang, 2005]. 
 
[Hartel and van Harmelen, 1984] have proposed the Unix command tsort to sort tasks topologically, allowing to resolve 
dependencies. CAMxRunner also uses tsort, since, as a by-product it also reveals any cycles within the graph (meaning that a 
task depends on itself, which is a serious error condition). 
 
Currently, CAMxRunner includes support for CAMx 4.42, 4.51 and 5.10, which are properly separated by a general directory 
structure. At runtime, CAMxRunner determines which model and version to use and loads the appropriate modules for this 
setup. May modules are shared among versions, in such cases, UNIX softlinks (ln –s) are used to refer to the actual files, so 
that only one version needs to be maintained. 
 
To keep track of any custom changes of the model, CAMxRunner includes a facility to store patches (files created with the 
UNIX tool patch) to the source code in a way that makes it easy for others to apply the same patch to their code as well. 
Generally, CAMxRunner offers a lot in the area of compilation – the system can for example ask the user predefined 
questions like “What is your maximum grid size in x-direction” in order to apply all relevant changes to the source code. The 
list of changes is available to the system at run-time, so that it can for example test in advance if a problem domain is too 
large to be processed by the current model binary. 
 
At runtime, sophisticated check functions make sure that input file are present or that output files are absent (CAMxRunner 
will not overwrite existing files unless the user specifies this explicitly). CAMxRunner uses its logging facility to report 
information about the course of the simulation – the user can select which level of information (debug, verbose, information, 
warning, error) should be displayed on screen, written to a file or sent via email. 
If a Mail2SMS gateway is available, this can be used to send SMS on error conditions – this is a feature we use here at PSI. 
Each step that was executed successfully is recorded, so that restarting a run that failed at some point is as easy as restarting a 
script (if fixing the problem is trivial). 
 
From a programming methodology point of view, CAMxRunner uses a test-driven approach, as proposed by Beck [Beck, 
2003]. This means that before new functionality is added, automated tests thereof are added to the system. This changes the 
focus of the programmer towards unusual situations that might occur and lowers the risk of errors. Currently, the system 
includes more than one hundred tests that can be called routinely. This also allows testing for any bad side-effect of new code 
quickly. 
 
Finally, the code is formatted in a way that it is well readable and it is annotated in a way that NaturalDocs [Valure, 2010] 
can automatically produce HTML code documentation of the whole system. 
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CONCLUSIONS 
We described an integrated approach to air quality modelling and presented CAMxRunner as a first implementation of these 
ideas. We believe that such a framework is beneficial for many model users and is not only limited to CAMx. 
Also, we hope that the ideas outlined here as such find their way into many modelling teams, since most of the techniques 
have been around  for a long time (the Unix tools used in this programs are all several decades old, but still very useful). 
 
OUTLOOK 
Starting with version 5, CAMx supports MPI (Message Passing Interface) as an additional parallel programming approach 
besides OpenMP. This allows CAMx users to take full advantage of large computer clusters that support only distributed 
memory. However, such systems normally use some kind of queuing systems (The European Centre for Medium-Range 
Weather Forecasts for example uses LoadLeveler™ by IBM) to accept batch jobs. Such systems use special files to describe 
a job. We are in the process of making CAMxRunner capable of producing such files automatically. 
Also, we are working on the implementation of WRF in our system – with this, CAMxRunner would offer a complete Air 
quality modelling platform both for regulatory as well as for research use. 
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