HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

H13-75
CAMXRUNNER: A MODULAR ENVIRONMENT FOR EFFICIENT CAMX SIMULAT  IONS

Daniel C. Oderbofz Sebnem Andreani-Aksogini®, lakovos BarmpadimbsAndré S.H. PrévétUrs Baltenspergér
Paul Scherrer Institut, Villigen-PSI, Switzerland

Abstract: Air quality models are complex systems, which eheallenging to run. In the future, complexity af quality models will rise:
more computing power offers the possibility of gher amount of output, which in turn complicatetadanalysis. In the light of this, the
traditional triad of pre-processing, simulation,spprocessing must be rethought. An enhanced agprizato break up the sequential
structure of this process, allowing for parallebgessing. This can lead to a significant speedupaifel runs and a more efficient use of
computer resources.

Modular modelling systems, such as the Comprehenilvquality Model with extensions (CAMX©ENVIRON 2008]) offer various model
setups for each model run. This creates a largéaunf possible permutations of settings and ijatid and stresses the need for automatic
pre- and post-processing. If manual steps are\edoin running a model system, reproducibility isdered, on the one hand because of
operator errors, on the other hand because ofmgiskicumentation of these manual steps.

CAMxRunner is a modular, extensible suite of basipts that automates whole model runs includirey pnd post-processing and supports
both sequential as well as parallel approachesa#t written with CAMx as a target platform, butistgeneral enough to support other
models.

A run is controlled by a configuration file andrelnates manual steps. This approach is an impastapttowards efficient model runs.

The system keeps track of steps already execuiadns can be suspended and resumed later.

Since the outcome of a model run critically depeniishe programs used, CAMxRunner includes capigsilio manage different versions
of all binaries needed. This includes a separatfatifferent model versions and their support pamgras well as the separation of different
compiler options (for example to support differptatforms).

Especially for longer model runs, the use of CAMRrRer reduces the workload on the modeller but assists the interpretation of the
results by fully documenting each run in a confagiaon file.

Key words: CAMx, Automation, Reproducibility, Accountability

INTRODUCTION

Reproducibility is an important challenge for modedl across all scientific disciplines, mostly besit is easy to change
the setup and the source code of a model, buttbaddcument these changes. We propose a new appmacodelling in
general and air quality modelling with CAMx in partlar and implemented these ideas in a completeéeedd modelling
system.

The reasons why it is often difficult to reprodunedel runs, especially those by other groups aneifoid: be it custom
modifications to model code, special treatmentpiut data or simply undisclosed options. We belidna the current state
approach to modelling harms the reputation of thelezcommunity, because the ability to reproduseilte of others is a
central aspect of the scientific method.

CAMxRunner is a modelling system that initially grewt of the need to reduce as many manual stepsossbie.
Gradually, it became a full-fledged environment foodelling with CAMx. Even though it was designedite used for
CAMX, it is flexible enough to support other modelsan implementation to support the meteorologicadeh WRF
(Weather Research and Forecastimdichalakes et a).2004] is planned in the near future.

Other authors, includingSchwab et al.2000] proposed similar solutions to the issugepiroducible model output. The
approach by Schwaebt al. is based on the Unix todlake which is powerful but not user-friendly. Also, thelid not
consider the modelling system as a whole, so thayad address the management of the binaries addicadions thereof.

CAMxRunner is (in our opinion) a user-friendly todlat can manage the whole “lifecycle” of model ddtam the
generation of the input data to the productionlofg

We have used CAMxRunner for our day-to-day modelliregds as well as to allow beginners to use CAMXxchwhi
dramatically reduced the learning curve.

IMPLEMENTATION

CAMxRunner was written in Bash (>= 3.x) because CAMRrasmally run using C-shell scripts, but C-shell sloet offer

support for functions. This should enable CAMx ugersinderstand the code quickly and be able to gddinto specific

needs.

It was an important design goal that the systemadular and extensible, especially since CAMx iglaiar as well and pre-
as well as postprocessing depends on the moduwleart currently in use.

The system is built on a simple directory structilna is based on the distinction of modules féfedént models and their
versions.

124



HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

-] CAM#Runner.sh The Runner script
-] CAMH.in This is the cantral file for CaM=. Itis actually a link to a file in the state directory {each daily contral file is kept there)
-] CAMn-v4.51-ENYIRON_testcase This is a run, in this case of the testease far 4,51, It is simply a link to CAMxRunner.sh
-] bin Contains the CAMx code & Binaries and some helpers
-] conf The Configuration for the CAMxRunner (base conf, CAMx version specific configuration and the configs for each run)
M43 doc Contains the Docurnentation
-{_7] inc Contains important includes for CAM=zRunner.sh
E-{_] lib Dynarmic libraries for CAMx are stored here (2. g, HDF-Support)
-{_7 log Logfiles are stored here
-3 modules The modules reside here
Elﬁ common Contains program modules of the CAMxRunner. Model and version specific subdirectories,
-] 10_string_functions.sh
[ 11_date_functions.sh
-] 20_log_functions.sh
-] 30_wersion_control_functions.sh
[ 40_check_functions.sh
-] 50_state_functions.sh
-] 60_wariable_functions.sh
-} 70_camx_functions.sh
[ 80_array_functions.sh
-] 90_preprocessor_functions.sh
[ 91_postprocessor_functions.sh
CAM= contains model-specific functions

+{Z]4 .42 contains version-specific functions

----- {Z]4.51 contains version-specific functions

E-CJ PMCAMK contains model-specific functions
{7 installer contains the installer modules

{3 model contains the modules that run models
H-{_] postproc Postpocessors, by CAMx Version

El+=3 preproc Prepocessors, by C&Mx Version

B-C3 CAME

B-C54.42

: E@ daily Prepocessors that are called for each simulation day
{) 01_boundary_conditions.sh

[) 02_create_emissions.sh

]j 10_convert_emissions.sh
]j 10_convert_emissions.sh

E-{J once Prepocessing modules that are cslled onee before the simulation starts

BT PMCAM=

-] state Stores the state database - each run has its own directary
M) templates Templates

-] testcase contains the testcases

Figure 1: The directory structure of CAMxRunner

In Figure above, you can see that the subdirectomybination CAMx/4.42, 4.51 and 5.10 occurs in mdiffgrent places to
separate modules (these are bash-wrappers thedliriaries) and other components of the system.

To introduce a new model like WRF, the respectivealories need to be created (the system can dattomatically) and
be filled with the relevant modules by the user.

Templates for modules (in the templates/ directgiy® users a head start for the further developme@AMXRunner.

A modelling system consists of many different biesi(pre- and postprocessors and the model itseffich poses some
special problems if the same system should be gelifferent hardware platforms. At the Paul Sceetnstitut, we use the
Andrew File System (AFS), a network filesystem tors our data centrally for all servers. TherefG®&MxRunner keeps
binaries for different platforms separated, to dvbis issue. This is achieved using a logical mgngonvention that allows
to infer the platform for which a binary was coneil

In contrast to the “jobfiles” that ENVIRON suppliggéth CAMx, CAMxRunner strictly separates configuratidata from
code to run the model. In addition to this, it yuihtegrates pre- and postprocessing, so thateaetld of a run, one is left
with completely processed data, whatever postpsingshere is needed. That way, a CAMxRunner condigon file
contains all settings relevant for the model ruguestion.

Often, configuration items (say, an input file patlepends on runtime data, such as the day cwrreimtulated. To account
for this, CAMxRunner offers so-called file-rules, whiare arbitrary strings that may contain varialheg are resolved at
runtime. The system incorporates a multitude ofaldes (mainly date-related) that can be used ah sules. For example
the rule '$CXR_INPUT_DIR/tuv._$CXR_CAMX_CUSTOMER_winter$CXR_YEAR_S_week_CXR_woy.out' is resolved to
/inputs/tuv_bafu_winter_06_week_1.out when simafativeek 1 of winter 2006 for customer bafu.

Session 1 — Model evaluation and quality assurance 125



HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Due to its modular architecture, it is straightfard to add new processing modules, be it for prggostprocessing. Since
CAMxRunner normally runs non-interactively for obveoreasons, the only requirement for such a modutleat it can be
run without user intervention and does not for eglemequire a graphical user interface.

Since model runs depend on many input files, tietbe possibility of them changing without the rater’s knowledge,
especially if a whole team provides input data.abgount for this, CAMxRunner keeps a database ofksiuees (MD5
hashesRivest 1992]) which allows to detect even single bitrades of files.

Another important design goal was to make full abenodern multi-core shared memory systems. The CAhdxlel itself
already employs OpenMm®agum et al. 1998] to exploit such systems optimally, but mast- and postprocessors still use
only a single core. To that end, CAMxRunner can restthe dependencies of pre- and postprocessor$whit then be
executed in the proper order in parallel. Thisordy uses the computing system in a sustainabléematut also reduces the
total elapsed time required for a run.

To be able to infer the correct order to execugetéisks of a run, and to know which tasks are ieddent, reasoning on the
dependency graph is needed.

___( mode\_z}
— — T
- e N
i / \ \ —
e — A T —
/(/\/\ _rnodel_lil Q,___ E:Envert_emissions__%_‘_;_/“ (Hkq__?fundary_cond itionsf ___)
S T e e

— — — . Ly e T - v
boundary_conditions 1 > (_ convert emissions.1 > ( initial_conditions ( create_emissions_2 >
st " " S Ml = =5

(__(reaneiemissionsil_”p

Figure 2: A sample dependency graph of a two-day ru

Figure 2 shows an example of such a graph: nag@esent tasks ¢feate_emissions”2s the task that creates emissions
for the second modelling day) and arrows (edgesimidepends on”. In our example, the taskemap initial_conditions
create_emissions_1 and _2, boundary_conditions dl_@hare independent of all other tasks and could beinyarallel
first. Two approaches to determine if tasks arefrashdent, include looking at the adjacency matrixhe graph and sorting
the graphs nodes topological@hartrand and Zhang2005].

[Hartel and van Harmelen1984] have proposed the Unix commandrt to sort tasks topologically, allowing to resolve
dependencies. CAMxRunner also utsst, since, as a by-product it also reveals any cycigsimthe graph (meaning that a
task depends on itself, which is a serious erradition).

Currently, CAMxRunner includes support for CAMx 4.4Z4and 5.10, which are properly separated by argédirectory
structure. At runtime, CAMxRunner determines whichdal and version to use and loads the appropriattutas for this
setup. May modules are shared among versionscim cases, UNIX softlinkdr{ —9 are used to refer to the actual files, so
that only one version needs to be maintained.

To keep track of any custom changes of the modeMxRunner includes a facility to store patches (fitesated with the
UNIX tool patch to the source code in a way that makes it easytfrers to apply the same patch to their codeab w
Generally, CAMxRunner offers a lot in the area ofmpdation — the system can for example ask the psedefined
questions like “What is your maximum grid size walixection” in order to apply all relevant changeghe source code. The
list of changes is available to the system at mn@t so that it can for example test in advance piroblem domain is too
large to be processed by the current model binary.

At runtime, sophisticated check functions make shet input file are present or that output files absent (CAMxRunner
will not overwrite existing files unless the usgresifies this explicitly). CAMxRunner uses its loggifacility to report
information about the course of the simulation e-tiser can select which level of information (deluggbose, information,
warning, error) should be displayed on screenjevrito a file or sent via email.

If a Mail2SMS gateway is available, this can bedusesend SMS on error conditions — this is a featve use here at PSI.
Each step that was executed successfully is redpsethat restarting a run that failed at sometaeias easy as restarting a
script (if fixing the problem is trivial).

From a programming methodology point of view, CAMxRer uses a test-driven approach, as proposed k¥ [Beck
2003]. This means that before new functionalitpdslied, automated tests thereof are added to ttensy§his changes the
focus of the programmer towards unusual situatibas might occur and lowers the risk of errors. €ntly, the system
includes more than one hundred tests that canlleel cautinely. This also allows testing for anydtside-effect of new code
quickly.

Finally, the code is formatted in a way that itisll readable and it is annotated in a way thatuNdbocs Valure, 2010]
can automatically produce HTML code documentatibthe whole system.

126



HARMO13 - 1-4 June 2010, Paris, France - 13th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

CONCLUSIONS

We described an integrated approach to air quaddaglelling and presented CAMxRunner as a first impleatéeon of these
ideas. We believe that such a framework is bera¢fior many model users and is not only limitedCisMx.

Also, we hope that the ideas outlined here as §adhtheir way into many modelling teams, since trofsthe techniques
have been around for a long time (the Unix tosksduin this programs are all several decades otdsthl very useful).

OUTLOOK

Starting with version 5, CAMx supports MPI (Mess&gssing Interface) as an additional parallel prognang approach
besides OpenMP. This allows CAMx users to take ddNantage of large computer clusters that suppoyt distributed
memory. However, such systems normally use somé &fnqueuing systems (The European Centre for MadRange
Weather Forecasts for example uses LoadLeveler By to accept batch jobs. Such systems use spfieialto describe
a job. We are in the process of making CAMxRunnegabbgpof producing such files automatically.

Also, we are working on the implementation of WRur system — with this, CAMxRunner would offer a qate Air
quality modelling platform both for regulatory agleas for research use.

ACKNOWLEGEMENTS

This work would not have been possible had ENVIRO®MN. Inot publicly released their CTM CAMXx. | thank #fie
employees of this company, especially Chris EmeryHeir support and valuable input. CAMxRunner inesi¢ode written
by these people: PatrickLeBoutillier (we use histtenything" implementation) and Chris Johnson (teeiged some date
functions).

This work has been partially funded by the Swis&€R@Swiss Federal Office for the Environment) unclentract

Nr. 06.9115.PZ/H094-1453.

REFERENCES

Beck, K.,Test-driven development by examplddison-Wesley Professional, 2003.

Chartrand, G., and P. Zharigtroduction to graph theoryMcGraw-Hill Higher Education, 2005.

Dagum, L., R. Menon, and S.G. Inc, OpenMP: an inglustandard API for shared-memory programmithgEE
Computational Science & Engineerirfgy 46-55, 1998.

ENVIRON, User's Guide, Comprehensive Air Quality Mbdeith Extensions (CAMXx). Version 4.50, ENVIRON
International Corporation, Novato, 2008.

Hartel, P.H., and F. van Harmelen, Analysis of madstructures with respect to their interconnegiotogy, Interfaces in
Computing 2, 81-92, 1984.

Michalakes, J., J. Dudhia, D. Gill, T. HendersarKlg@mp, W. Skamarock, and W. Wang, The weatherareh and forecast
model: Software architecture and performancelith ECMWF Workshop on the Use of High Performance
Computing In Meteorologyp. 156-168, Citeseer, 2004.

Rivest, R., The MD5 Message-Digest Algorithm]nternet RFC (Request for Commeni992.

Schwab, M., M. Karrenbach, and J. Claerbout, Maldogntific computations reproducibl€omputing in Science and
Engineering 61-67, 2000.

Valure, G., The NaturalDocs Website, 2010.

Session 1 — Model evaluation and quality assurance 127





