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Abstract: With increasing concern of hazardous materiaisgbmaliciously released to cause mass casualtiépanic, there is a growing
interest in the use of Information Management (Byiytems for incident support. These IM systemditaie collaborative planning, aid
decision support and provide an accurate and uate-picture of the evolving hazard. However,dittias been done to investigate the
benefits and effectiveness of these systems, pkatig when used prior to an event or while the iedlate hazard is still present; this work
aims to address this. We have developed the PpmoResponse and Information Management Engine (ERMWhich enables us to
investigate the effectiveness and potential benefilM systems for incident support. PRIME integsoptimised sensor placement, sensor
management, sensor data fusion, data assimilatipig hazard modelling, recommended mitigation, larics to scientific reachback. Using
metrics and measures of effectiveness, combinedd avithemical and biological (CB) synthetic envir@mito produce realistic simulated
challenge data, we are evaluating the effectivenesach component or combination of components pvésent the results of the study to
date, including what benefits CB information systeran provide over current procedures, and whethencreasing level of automation
and sophistication can provide real benefits. Thdyshas shown that computer optimisation of CBsseplacement and assimilation of CB
sensor data can increase the utility of CB deferssets and improve situational awareness therdimgadecision making.
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INTRODUCTION

In hazard release incidents it is particularly imipot to have good situational awareness in omenake the most effective
decisions and save lives. CB and other sensors eateployed to measure the presence of toxic aieboamtaminants;

however it is necessary, and a significant chableihg make best use of the information providedetermine how a hazard
will evolve in order to warn people appropriateljhis has particular relevance to military and handl security

applications. The aim of these IM systems is tovig® the best possible picture of the evolving héizand a range of
decision aids to support commanders in choosingrib&t effective responses. Capabilities may incketesor data fusion,
hazard prediction and effects models, and auxiliaofs such as sensor placement optimisation. Thesefits need to be
evaluated against the aim of the system, i.e. tomise the number of casualties and level of danaegkdisruption caused.

In order to investigate the potential benefits,hawe developed a prototype called PRIME. It integrat range of decision
aids and support capabilities within an informatimanagement system, including: automated sensoemlknt; a sensor
management system, including sensor models; maal$ensor data fusion; rapid dispersion modellbagualty and effects
modelling; mitigation modelling; and informationsgiay. It has been designed so components cancoafigured and

different components can be switched in and odadditate investigation and evaluation. In thisdyt we have focused on
the benefits of automated sensor placement andsafsmr data fusion.

EVALUATION APPROACH

Evaluation system

Two different methods have been used for produtiiegchallenge: a simple modelling approach thawallarge numbers
of Monte Carlo sampled scenario variations to bei@out, and a more advanced computationally sitenapproach that
allows a more detailed analysis. Both are part ofemaluation system for conducting studies.

The high level approach uses rapid modelling ohesamenario and providing results data that allowes ¢alculation of
evaluation metrics, in this study the number ofieétses. The modelling uses simplified represeatetithat capture the main
aspects of the physics and processes involveddimg Gaussian dispersion modelling for the transpad diffusion,
response and effects, and the statistics of thdtses

The highly detailed modelling uses an advancedhgjitt environment (SE)
that has been used to produce challenge data @&@8). The core componen
is a physics-based concentratituctuation model that produces realistic ti
series correlated in space and time. The SE insludedels for sensors
human effects and performance, and mitigation respoFigure 1 provides a
example simulated concentration realisation fieRly integrating these
instantaneous concentration fields a challenge gtosan be calculated ang
then casualty estimat@gsoduced. Effective dosages can be calculatedafti g
mitigation approach proposed, for example, and lteszompared with the

base challenge dosage.
Figure 1. An example concentration realisatiordfieith
modelled sensoralarm status (red — alarming, yeHowt).
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Scenarios

Two sets of scenarios were used: one for a militese in Afghanistan and the other for a city i tHK. Throughout the
study, care was taken to ensure it was completetyassified and no classified information was ugeopulations were
estimated from openly available imagery, meteoriclrigdata was obtained from unclassified sourcedran created
distributions, and sensor and agent properties alstetaken from unclassified sources or plausialees were used.

The first set of scenarios focused on Bagram atefdrase, Afghanistan
(Figure 2). A5 km domain was used and permittegsselocations were
within the base perimeter. The timescales for threme defined as:

1. Indefinite — there is no specific information onethhreat so a
uniform distribution is used (A). Annual climatolpgs used as the
weather input.

2. Long term — there is a belief that the base mayabgeted so the
threat distribution is focused on this (B). The @inlogy data for the
winter months was used for the meteorology.

3. Medium term — there is intelligence that the erteato the base may
be targeted in the following month, July (C). Themetology
weather for July is used.

4. Short term — there are reports that insurgents attgck using
mortars or from hand held devices from the nortkt emd so a
possible threat profile is produced (D). The 5 deather forecast is
used as the meteorological input.

Figure 2 shows the threat distributions used irttineat evaluation.

Figure 2. Bagram air force base with release lonstio
(in red) giving threat distributions: A — uniform B
. i X . Gaussians over key areas ofthe base, C— Gaussian
The second set of scenarios is based in Bristol (fRlgure 3). It consists centred onbase entrance, and D — distributions

of a 5 km square domain that includes most of grgral area of the city. representing release capacity of insurgents.

Here the scenarios considered were based on pngectgainst

combinations of threats and timescales, which tdtethe meteorological

conditions. The challenge scenarios for Bristol wagtned by:

*  Four threat location distributions — one focusedaoropen space in
front of the local government headquarters (A),theoin a square in
a commercial area (B), a third widely dispersed damritred on the
city centre (C) and the fourth along the river roate the city (D).

«  Five meteorological distributions represented bydvroses of the
annual meteorology for Bristol, two climatology datets for two
separate months, a three day weather forecast éotdlly uniform
meteorological distribution.

This resulted in 20 different combinations, and éach of these both

chemical and biological releases were considerégur& 3 shows the

threat distributions used in the challenge evatuati

Capabilities evaluated

The study has focused on the following two setsapiabilities: Figure 3. Bristol with release locations (in red)
showingthreat areas: A — College Green, B—

Queen’s Square, C—dispersed threat area,and D —

e Automated sensor placement. River Avon.

Sensors for detecting toxic airborne materials iemgortant assets

that can be expensive and often limited in avdlilgbiCB sensors

need to be positioned with care to provide the maxn information to allow timely identification ohaaccidental or
intentional release of dangerous materials. Theigito minimise the casualties and effects, ansl shbuld be the key
goal of any placement strategy.

There are two main approaches to sensor placertiBnRules-based sensor placement in which senserglaced
according to heuristic rules. This approach isipaldrly appealing to the military as it providest 8f rules that can be
followed consistently and which can be describedibgtrine. (2) Computational optimisation, which dhxes running
multiple dispersion simulations and then using ptinsiser to determine the best placement. We haydeimented a
computer optimisation approach called SPARTA (Sefdacement Algorithm for Rapid Theatre Assessmenitjch
we have used in this evaluation study (Griffith@1@a). The main challenge to the sensor placemarelabment is
computation time. To be robust, the optimisatioquiges many simulations (in fact several thousare tgpically
required) because of the range of possible evamasios and conditions and the need to ensurecisuificoverage of
these using Monte Carlo sampling. Much of the deymlent has focused on methods for handling the langebers of
simulations efficiently when optimising. SPARTA hiasen designed to reduce runtimes compared to apgigpaches
without compromising the integrity of the optimisat. It can produce an optimised sensor placeméhtnvl0 minutes
on a standard personal computer. Figure 4 showsample output.

For the evaluation, we implemented a number ofsrblesed methods that place sensors using prescrite=d These
include some commonly used rules and some moreigtmalited ones developed based on the resultsnoplsatest
cases carried out using the automated optimiséticimiques. The rules we have considered are:
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Place the sensors evenly around the perimeteobtégiion area.

Spread the sensors evenly throughout the proteatiean

If the threat and protection areas do not ovenggce the sensors evenly
around perimeter of the protection area; othervgipeead them evenly
throughout protection area.

4. For chemical, if the threat area and protectiora ate not overlap, place
evenly around the part of the protection area pstemthat faces the threat
area; otherwise spread them throughout the ovextap. For biological,
always place on perimeter of the protection area.

wh P

e Sensor data fusion.
In the absence of any other information, the curneilitary approach is to / :
interpret. the observation point as being the sotcrcati.on. In fact this .is ‘ Figure 4. Exple SPTAoptimised
very unlikely to be_th_e case and her_me the_ assummlll lead to error in placement of 20 chemical sensors (blue)—
the hazard prediction. An additional issue is theckl of local short term deployment case.
meteorological observations or up-to-date accunegather prediction data
necessary for hazard modelling. There has beergrifisant research to investigate whether compormaii
techniques can be used to fuse sensor data anid@tmetter hazard prediction. There are severaicgupes to the
problem. These include fusing data to determineoarce term that best matches the observations atal d
assimilation that uses observations to refine aated representation of hazard. The output of acsoastimation
algorithm can be used to make a hazard predicsorgla standard dispersion model.

a) Input concentration, time = 100 s

b) Nowcast conc. estimate, time = 100 5|

We have developed a simple data assimilation apprdizat fuses
real-time sensor observations to provide a CB haZaodv-cast”
(Griffiths, 2010b). Our Nowcast approach represéimshazard as a [
collection of Gaussian puffs, which it optimallytsfito current [
observations using the expectation-maximisationM{Ealgorithm
(Dempster, 1977). Because it requires no dispemiather complex
modelling, it is extremely fast providing a nowchaizard estimate in gy —mr————
real time. Figure 5 shows input concentration data resulting IR
concentration fields based on the Nowcast puff fitsthis example
run, a large number of sensors have been simulatéahugh in the
actual evaluation cases we use much lower (tygich0), more
operationally realistic numbers.

d) Nowcast conc. estimate, time = 200 s|

An important benefit of the E-M approach adoptethat it produces
a set of Gaussians that are compatible with maagridadispersion
models. Nowcast has been interfaced to a simpid @Gaussian puff
model, which uses its output to automatically paelwa hazard
prediction. An issue for operational hazard predictis that
available meteorology may be older forecast dataligervations
taken at a significant distance from the releashkiclw results in
inaccurate meteorological inputs for the hazarddist®n model.
The Nowcast algorithm developed does not requimeeteorological  Figure 5. Comparisons of challenge concentration
input, and as it provides an estimate for the auaghhazard it is able fields (input) shown onthe left (a, c and e) and

to estimate the underlying local wind speed andation, which can Nowcastconcentration estimates (output) shown on
ying P the right (b, d and f) attimes 100s (top—a and b)

then be used by the dispersion model. 200 s (middle —candd)and 300s (bottom— e and f)
from true release time. Circles show sensor lostio

€) Input concentration, time = 300 s f) Nowcast conc. estimate, time =300 s

Evaluation metrics

The metrics calculated for the two parts of thelgtwere:

e For sensor placement, the total casualty redudioneach of the approaches (Rules 1-4 and SPARTA atamp
optimisation). The casualties are calculated baseahitigation actions being taken based on senaonings.

e For sensor data fusion, the Measure of Effective(iROE) approach, described by Warner (2004):

MOE = [h ’hJ 1)
Aos Aer

where AOB is the area of challenge dosage (i.e.reagen) above a threshol8er is the area of predicted dosage above the

threshold and\oy is the area where both dosages are above thédfale®Ve also consider the distance of MOE cootdina

to (1, 1) — the perfect match — to facilitate congmns between approaches.

RESULTS

Sensor placement

For the high-level analysis runs, 5,000 individcladllenge scenarios were sampled for each of thealB test scenarios (4
for each of chemical and biological for Bagram, 20 both agents for Bristol). SPARTA and the four sdbmsed
placements were evaluated using these challengega€h scenario the average reduction in cassialts calculated based
on available mitigation in response to modelledssemesponse for the placements. The results sihrowigure 6 and Table
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1 reveal that SPARTA outperforms all the rules-bagggioaches in over 95% of the scenarios (in tbases where it does
not the results are near identical) and providesalvbest casualty reduction.

Comparison Using High Level Modelling Table 1: High-level analysis rankings and averagegntage casualty

E”"“ reductions for SPARTA (SP) and Rules 1 to 4 (R1:R4)
: Rank [ SP | R1L | R2 R3 | RA
1 46 1 0 0 1
e 2 0 5 13 14 16
3 1 8 12 17 10
o . +Rlless 4 1 16 11 10 10
o 4y 5 0 13 11 7 9
. Average | 11 | 34 | 35 32 | 31
e m wm @ @ rank
‘“age casualty reduction using SPARTA Ave rage
casualty | 81.3% | 65.0%| 69.39% 69.5% 64.80
reduction

Figure 6: Results of the high-level analysis. Pointthe area
below the diagonal line indicate cases where SPARTA
performed better.

For the detailed evaluation, 160 challenges for 8ag(20 samples from each of the 8 scenarios) afdchallenges for
Bristol (10 samples from the 40 scenarios) weregperéd against each sensor placement produced bRERANd the four
rules. The casualties for each were calculated mdtliefensive measures, and then where mitigatttorawas taken if a
sensor alarmed, with results averaged for eachur&i§ and Table 2 show SPARTA performs best, pingidhe best

placement in nearly two-thirds of cases and sulistngreater overall casualty reduction.

Comparison Using Detailed Modelling

Table 2: Detailed analysis rankings and averageep¢age casualty

x . reductions for SPARTA (SP) and Rules 1 to 4 (R1-R4)
Ve Rank SP [ RL [ R2 | R3 | R4
£ . it dadly < 1 31 0 4 3 10
% s w :.‘ = Rules1 2 3 5 12 10 18
N e 3 4 10 9 16 9
4 4 19 9 12 4
g 0 5 6 14 14 7 7
Average | 5,4 |39 | 34 | 32 | 26
o 0 a0 &0 &0 100 ran k
Jage casualty reduction using SPARTA AVG rage
casualty | 86.7% | 72.2%| 76.2% 75.7% 76.5%
reduction

Figure 7: Results of the detailed analysis. Pamthe area below
the diagonal line indicate cases where SPARTA peréd better.

Sensor data fusion
For each of the 200 different challenge scenati@sfollowing runs were made for the comparison:

* Avrelease from the true source location and tintee-True Release approach.

* Avrelease from the point of the first sensor teedts alarm status — the current military Docti@pgroach.

*  The Nowcast assimilation method. As this providpdaied estimates over time, a hazard dosage poedioas

selected for a time between the first and lastarenisservation.

In each case the models were provided with theahoteteorological conditions used in the challesigaulation.
The MOE results for each of these runs are shovifigare 8. This shows all three approaches ardesked near to the (1, 1)
perfect match. Considering the average distance thardeal (1, 1) coordinate, we find that the alise is 0.196 for the
True Release approach, 0.216 for the Doctrinal amprand 0.166 for the Nowcast method. In fact id &fithe 200 cases
Nowcast provides the best estimate in terms ofcless of match to the challenge. This suggests &khig performing the
best, even better than the True Release approadth vehsomewhat surprising. It is likely that thewtast algorithm is
refining the prediction based on the sensor daadisegion so that it is able to outperform the TiRelease ensemble
prediction modelling.
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Of particular interest in this work was whether tewcast data assimilation MOE Results with Accurate Input Met
approach could compensate for errors in meteorcdbgnput, which is a ! Rt

. e . . . . . . 0.9 - it
significant operational issue. The scenarios werarr but this time with a . Yy

0.8 o

e

°
. o
PP

random error of 10to 3C introduced into the meteorological input. The
results in Figure 9 show that the performance detges substantially when
we provide erroneous meteorological, however we $é@wvcast is

= Doctrine

Aov/Aer

0.5 * NowCast
significantly better than the other methods. o g
The poor True Release and Doctrine results reftecetror in the input wind 03

direction. The average distance to the (1, 1) ideafdinate is 0.831 for True 02
Release, 0.771 for Doctrine, and 0.278 for Nowaaktch is by far the best. o1
In fact Nowcast provides the best estimate in 1fXB@ 200 cases in terms of 0

closeness to matching the Challenge dosage. Thismrates Nowcast is LY e
assimilating the sensor data and providing an iwvguio meteorological Figure 8: MOE results for Doctrine, Nowcastand True
estimate as this is used by the coupled dispersimatel. Release dosage predictions compared to Challenge

Dosage, and with accurate input meteorology.

CONCLUSIONS MOE Results with Error on Met Input
The study has investigated two key aspects of CBrtiamadelling: LR O ST 55 3
* Sensor placement. The comparison of the SPARTA ctenpu
optimisation with four rules-based approaches ubit) high level
and detailed modelling approaches shows that irh bzases
SPARTA performed the best overall. One perceiveavbaak of

= Doctrine

Aov/Aer

* NowCast

computer optimisation for operational sensor plamem is o s
computation time. However, SPARTA demonstrates ipdssible & : i

to provide robust results rapidly, in less thanniiutes. Although 0| A

rules based approaches show some utility and hawe benefits it 01| g

is likely computer optimisation will outperform ttmeon the key 0

measure of performance — placing sensors to beséqirpeople T

and assets. Figure 9: MOE results for Doctrine, Nowcast and True

Release dosage predictions compared to Challenge
« Sensor data fusion. Comparisons between a data iligim  Dosage, andwith randomerror ¢t 30”in the

method (Nowcast) and two other methods — the cuisandard meteorological input.
doctrinal approach used by the military and usimg true release
location — have demonstrated that the Nowcast @gprprovides improved hazard predictions. Partibula the
situation where the meteorology is uncertain, Nati® seen to provide significant benefits; it lideato estimate
the local meteorological conditions. In these moreerationally realistic circumstances, it provideszard
estimates that are much closer to the true hakaditating that the Nowcast is capable of improvaiigiational
awareness.

The study has shown that computer-based decisiznaaid CB IM systems do have the potential to prongdebenefits to
decision makers. The investigation has shown @@ placement can be optimised to provide bietfiemmation to the IM
system, and sensor data fusion techniques candarawiproved situation awareness over current msthdlbrk is ongoing
to evaluate the benefits of other components winPRIME system.
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