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Abstract: This paper applies a Bayesian probabilistic inferential framework to the difficult problem of the estimation of the parameters of an 
a priori  unknown number of sources, using a limited number of noisy concentration data obtained from an array (or, network) of sensors. To 
this purpose, Bayesian probability theory is used to formulate the full joint posterior probability density function for the number of 
(unknown) sources and for the parameters (e.g., location, emission rate, source on and off times) that describe each source. A simulated 
annealing algorithm, applied in conjunction with a reversible-jump Markov chain Monte Carlo technique, is used to draw random samples 
from the posterior probability density function. The method is validated using a real dispersion experiment involving a release of a propylene 
tracer from four discrete sources. This experiment was conducted under a multinational cooperative FUsing Sensor Information from 
Observing Networks (FUSION) Field Trial 2007 (FFT-07). 
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INTRODUCTION 
The development of increasingly more sophisticated sensing technologies for the monitoring of the concentration of 
hazardous contaminants [e.g., chemical, biological or radiological (CBR) agents, toxic industrial materials] released into the 
turbulent atmosphere has generated interest in utilizing this information for the reconstruction of the contaminant sources 
responsible for the observed concentration pattern. More specifically, in public security applications for countering terrorist 
incidents involving the covert release of a CBR agent in a densely populated urban centre, a critical requirement is the 
characterization of the unknown source(s) following event detection by a network (or, array) of CBR sensors. The sensors are 
placed at different points in space within a designated region in order to function as detectors/monitors to provide quantitative 
measurements of the concentration of various air admixtures of contaminants. 
 
For example, the Department of Homeland Security (DHS) has deployed (albeit sparse) arrays of biological agent sensors in 
31 (with plans to expand to 120) cities across the United States as part of the BioWatch program in order to provide detection 
and warning of a covert bioterrorism event. In the context of homeland security, the BioWatch program has provided the 
impetus for recent research efforts directed towards the source reconstruction problem for determination of the location, 
emission rate and other characteristics of unknown source(s) of contamination. Further motivation is provided by a network 
of 40 radiological detectors that has been set up as a verification tool for the Comprehensive Test Ban Treaty (CTBT) in 
order to provide world wide monitoring of radioactive noble gases that can be used potentially for source localization and 
characterization of a clandestine nuclear test. 
 
To address the problem of source reconstruction, a probabilistic approach using a Bayesian inferential scheme has been 
developed, refined and generalized over the past several years by the author and colleagues: (1) application of the 
methodology to complex environments (inverse dispersion in built-up environments) has been developed by Yee E. (2006) 
and Keats A. et al (2007a); (2) generalization of the methodology to deal with a non-conservative scalar has been described 
by Keats A. et al (2007b); and, (3) application of the methodology to source reconstruction for long-range dispersion on 
continental scales has been demonstrated successfully in Yee E. et al (2008). Yee E. (2007) generalized the methodology to 
the reconstruction of multiple sources when the number of sources was known a priori. Finally, Yee E. (2008) developed the 
theory underlying the application of a Bayesian probabilistic inferential framework for addressing the problem of source 
reconstruction for the difficult case of multiple sources when the number of sources is unknown a priori. 
 
The objective of this paper is to use some new concentration data, measured by a sensor array consisting of 100 detectors for 
releases involving multiple sources, to test the procedure proposed by Yee E. (2008) for multiple source reconstruction for 
the case when the number of sources is unknown a priori. Furthermore, the computational framework used by Yee E. (2008) 
for sampling from the posterior distribution of the source parameters is significantly improved in the current paper. 
 
BAYESIAN INFERENCE FOR SOURCE RECONSTRUCTION 
In this paper, we apply Bayesian probability theory to address the problem of source reconstruction. Within the context of 
this problem, Bayes’ theorem yields the following result: 
                                                                                        

                                                                           
 
where I is the background (contextual) information available in the problem (e.g., model that defines the mapping from a 
source distribution S to the concentration C, background meteorology). The various factors that appear in equation (1) have 
the following interpretation. Firstly, p(Ө|I) is the prior probability density function (PDF) for a proposition (or, hypothesis) Ө 
about the source, predicated on the contextual information specified by I, with “|” denoting “conditional upon”. Secondly, 
p(D|Ө,I) is the likelihood function and is the probability that we would have observed the concentration data D, if Ө were 
known exactly (viz., the source distribution is known). Thirdly, p(D|I) is referred to as the evidence and, in our case here, is 
simply a normalization constant. Finally, p(Ө|D,I) is the posterior PDF for the proposition Ө about the source, in light of the 
new information introduced through the newly acquired concentration data D. Because p(D|I) is simply a normalization 
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constant, the problem for the specification of the posterior PDF of Ө reduces to the assignment of p(Ө|I) (prior distribution) 
and p(D|Ө,I) (likelihood function). 
 
Before we can proceed further, we need to be explicit about Ө. In this paper, we focus on a source distribution S associated 
with Ns transient point sources with the k-th source located at vector position xs,k and with source activation and deactivation 
times Tb

k and Te
k, respectively, between which the source is emitting at a constant release rate Qk (k = 1, 2, …, Ns). The 

source distribution has the following explicit form:    
                                                     

   
where H(s) and δ(s) denote the Heaviside step and Dirac delta functions, respectively. Now, we can assemble the parameters 
for this particular source distribution into the following source parameter vector:  

                                 

  
With this background, the problem of source reconstruction reduces to the following: estimate Ө given the concentration data 
D ≡ (d1, d2, ... , dN) where N is the number of concentration data.            
 
The posterior PDF p(Ө|D,I) embodies the state of knowledge about the source parameters, given the prior information 
encoded in  p(Ө|I) and the newly acquired concentration data D, the latter of which modulates our prior belief about Ө 
through the likelihood function p(D|Ө,I). In this paper, the posterior PDF is specified as follows (to within a normalization 
constant):  

                                              
Here, I denotes the indicator function, CJ is the J-th model concentration (and is a function of the source distribution encoded 
in the parameter vector Ө), and σJ is the noise standard deviation corresponding to the J-th datum (and incorporates the 
effects arising from model error, measurement noise, and stochastic uncertainty associated with either dJ or CJ).  
                                                                                                                                                                                                             
In equation (4), the prior on the number of sources Ns is chosen to be a binomial distribution with parameter p* (binomial 
rate) where p* ∈  [0, 1] and with a domain of definition between Ns,min and  Ns,max  (minimum and maximum number of 
sources, respectively). The prior on the emission rate is chosen to be a Bernoulli-uniform mixture, with γ defined as the 
probability that the source is turned on and Qmax defined as the a priori upper bound on the expected emission rate. The prior 
on the source location is chosen to be uniform (flat) over some spatial region D that is assumed to contain the contaminant 
sources. The priors on the source activation (on) and deactivation (off) times for the k-th source are chosen to be uniform 
over [t0, Tmax] and [Tb

k, Tmax], respectively, where t0 is a lower bound on the time at which the source was turned on and Tmax 
is an upper bound on the time at which the source was turned on or off. Note that the prior for the source off time explicitly 
encodes the fact that the time the k-th source is turned off must occur after it has been turned on. Finally, a Gaussian form has 
been used for the likelihood function in equation (4).   
 
COMPUTATIONAL FRAMEW ORK 
This section describes briefly the computational procedures that were used for extracting the source parameter estimates 
required for event reconstruction. The reader is referred to Yee E. et al (2008) and Yee E. (2008) for a more complete 
description of the computational methodology. There are two major issues in the computational framework applied to 
Bayesian inference for source reconstruction that need to be addressed: namely, (1) a computationally efficient methodology 
for the computation of the source-receptor relationship required in the determination of the likelihood function, and (2) a 
methodology for sampling from the posterior distribution for the source parameters. 
 
Fast computation of the source-receptor relationship 
The likelihood function is not a closed-form expression and its evaluation is computationally expensive owing to the fact that 
CJ (J = 1, 2, ... , N) needs to be determined for a given source distribution Ө. Moreover, a simulation-based posterior 
inference using Markov chain Monte Carlo sampling requires a large number of computations of the source-receptor 
relationship to be undertaken. In consequence, a fast and efficient technique for performing computations of the source 
receptor relationship (for a given source distribution Ө) is required to facilitate the rapid sampling from the posterior 
distribution. To this purpose, Keats A. et al (2007a) and Yee E. et al (2008) described a computationally efficient 
methodology for determination of the source-receptor relationship using an adjoint representation for this relationship. 
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Markov chain Monte Carlo sampling 
All the information arising from the application of Bayesian probability theory to the problem of source reconstruction is 
embodied in the posterior PDF of Ө. The posterior quantities of interest are expectation values of p(Ө|D,I), which necessarily 
involves an integration in a potentially high-dimensional hypothesis space. One method for overcoming this “curse of 
dimensionality” is given by the application of Markov chain Monte Carlo (MCMC) algorithms for posterior sampling. To 
this purpose, Yee E. (2008) described the formulation of a reversible-jump MCMC (RJMCMC) algorithm applied with 
parallel tempering for generating samples from the posterior distribution given in equation (4).  
 
The objective of MCMC sampling is to construct an auxiliary Markov chain whose stationary (or, invariant) distribution is 
the posterior distribution of Ө. To summarize, the Markov chain consists of a sequence of states Ө(t) (t = 0, 1, 2, ... ) resulting 
from individual updates consisting of three basic moves: (1) dimension-changing moves M0 involving the creation of a 
source atom at a random location, or annihilation of an existing source atom; (2) fixed-dimension moves M1 involving 
updates of the emission rates of the source atoms using Gibbs sampling; and, (3) fixed-dimension moves M2 involving 
updates of the location, source on and off times of the source atoms using Metropolis-Hastings (M-H) sampling. The state 
vector Ө(t-1) of the Markov chain at iteration t-1 is updated to the state vector Ө(t) at time t using the following procedure: 
 
 1. Specify the values (Ns,min, Ns,max, Qmax, Tmax, t0, γ, p

*) which define p(Ө|I). 
 
  2. Choose an initial state Ө(0) for the Markov chain by sampling from p(Ө|I). 
 
 3. For t ∈ {1, 2, ... , tupper}, conduct the following sequence of moves: 
 

 
 
where Ө* and Ө**  denote some intermediate transition states between iterations t-1 and t. 
 
To improve the “speed” with which a Markov chain traverses the hypothesis space (or, to increase the mixing rate of the 
chain in the hypothesis space), Yee E. (2008) implemented a form of parallel tempering based on a Metropolis-coupled 
MCMC algorithm. In this approach, r Markov chains are run in parallel, each with a different stationary distribution. These 
chains are run simultaneously, but occasionally a proposal is made to swap the states of two randomly selected chains. In 
consequence, the states in the “ladder” of Markov chains can swap positions with a certain acceptance probability as each 
chain equilibrates. In this study, rather than use a parallel tempering scheme, we employ a related (and simpler) simulated 
annealing scheme to facilitate chain mobility in the hypothesis space. In this scheme, we consider an ensemble of Nmem 
(typically between 50 and 200) source distributions (or, source molecules) that have been randomly drawn from the following 
modified distribution: 
 

  
 
The samples will be labelled Өk(λ), with λ ∈ [0,1] (k = 1, 2, ... , Nmem). Note that p0(Ө|D,I) = p(Ө|I) (prior distribution of Ө) 
and p1(Ө|D,I) = p(Ө|D,I) (posterior distribution of Ө). In this framework, it is useful to interpret the parameter λ as an inverse 
temperature T (so, λ = 1/T), with λ ∈ [0,1] implying T ∈ [1,∞ ]. The posterior distribution corresponds to the temperature T 
= 1, whereas the modified pλ(Ө|D,I) corresponds to “heating” the posterior distribution to a temperature T = 1/λ > 1 which 
results in a flattening of the distribution. 
 
When the stochastic sampling scheme begins and λ = 0 (infinite temperature), we randomly draw Nmem source molecules 
Өk(0) (k = 1, 2, ... , Nmem) from p0(Ө|D,I) (prior distribution). Given an ensemble of Nmem source molecules Өk(λ) that has 
achieved equilibrium (at temperature T = 1/λ) with respect to the modified posterior pλ(Ө|D,I), an ensemble of Nmem source 
molecules Өk(λ+δλ) that is consistent with pλ+δλ(Ө|D,I) (at the reduced temperature T = 1/(λ+δλ), δλ > 0) can be obtained by 
using the weighted resampling method (see Gamerman D. and H. F. Lopes, 2000) applied to Өk(λ) (k = 1, 2, ... , Nmem). An 
annealing schedule for λ ∈ [0,1] is required for the simulated annealing. In this paper, we applied simulated annealing with 
200 values of λ uniformly spaced in the interval [0, 0.05] and 400 values of λ geometrically spaced in the interval (0.05,1]. 
This gentle annealing schedule allows the ensemble of Nmem source molecules to transition slowly through a series of quasi-
equilibrium states from the prior distribution (λ = 0, or infinite temperature) at one end of the annealing schedule to the 
posterior distribution (λ = 1, or unit temperature) at the other end of the schedule. When λ = 1, the annealing phase is 
complete and probabilistic exploration of the hypothesis space proceeds (for each Nmem source molecules in the ensemble) in 
accordance to the scheme summarized in equation (5). The annealing phase of the scheme, corresponding to λ ∈ [0,1), is 
associated with the burn-in phase of the algorithm. When λ = 1, the MCMC algorithm has reached an equilibrium, at which 
point the probabilistic exploration corresponding to the sampling from the posterior distribution begins. These samples drawn 
from the posterior distribution can be used to make inferences about all characteristics of the source parameters (e.g., 
posterior means, variances, and highest posterior distribution (HPD) intervals).  
 
EXAMPLE: APPLICATION OF METHODOLOGY 
In this section, we apply the source reconstruction methodology to a real dispersion data set; namely, the FUsing Sensor 
Information from Observing Networks (FUSION) Field Trial 2007 (FFT-07). The experiments in FFT-07 were carried out in 
September 2007 at Tower Grid on US Army Dugway Proving Ground. In these experiments, the tracer gas used was 
propylene (C3H6). The concentration detectors used were fast-response digital photo-ionization (dPID) detectors. These 
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detectors give a frequency response of 50 Hz with a sensitivity of about 0.025 parts per million (ppm) by volume of 
propylene. In FFT-07, a network of concentration detectors was used, consisting of a total of 100 dPIDs arranged in a 
staggered configuration consisting of 10 rows of 10 detectors. The rows of detectors were spaced 50 m apart. The spacing 
between detectors along each row was 50 m. The overall (alongwind) length and (crosswind) width of the detector array were 
450 m and 475 m, respectively. Three-dimensional (3-D) sonic anemometers were arranged on three 32-m lattice towers 
along a transect parallel to the (alongwind) length dimension and midline of the concentration detector array. 
 
This example involves four continuously emitting sources. We used 62 detectors in the array for the source inversion. All the 
detectors in the array that measured a significantly non-zero mean concentration were used for the reconstruction, as well as a 
number of detectors for which the measured mean concentration was nominally zero. In this example, the mean 
wind direction was normally incident to the detector array.  The proposed stochastic sampling algorithm was applied with 
Ns,min = 1, Ns,max = 8, p* = 1/7, γ = 0.25, Qmax = 100 g s-1, and prior bounds for location of any source was contained in the 
domain D ≡ [0,100] × [0,500] m (constraining the xs and ys locations of the sources).  An ensemble of Nmem = 50 members of 
source distribution models Ө were drawn from the prior distribution and used for the simulated annealing phase of the 
algorithm. After λ = 1 was achieved, 1000 further iterations of the RJMCMC algorithm were applied to each of these source 
distribution model members during the probabilistic exploration phase of the algorithm to give 50000 samples of source 
distribution models drawn from the posterior distribution p(Ө|D,I). 
              

 
 Figure 1. Left panel: Trace plot (top) of the number of discrete sources Ns in the source distribution model samples drawn from p(Ө|D,I) 
during the probabilistic exploration phase of the stochastic sampling algorithm, and the posterior distribution (bottom) for the number of 
sources, p(Ns) ≡  p(Ns|D,I) . Right panel: Density plot consisting of samples of source distribution models obtained for Ns = 4 (most probable 
value for number of sources) projected onto the (xs, ys) subspace (xs and ys are in the alongwind and crosswind directions, respectively). 
 
Figure 1 (left panel, top) shows a trace plot for the number of discrete sources in a source distribution model sample against 
the sample (or, iteration) number. From this plot it is seen that the samples of source distribution models drawn from p(Ө|D,I) 
generally mix well over Ns. Note that annihilation moves for models from Ns = 4 to 3 do not occur. However, dimension-
changing moves from Ns = 4 to 5 (and, vice-versa), as well as higher-order transitions such as from Ns = 6 to 7 and its reverse 
occur also (albeit with smaller probability). Figure 1 (left panel, bottom) displays the marginal posterior distribution for the 
number of sources. Note that the most probable number of sources (Ns = 4) is favoured with a probability of about 0.6. Figure 
1 (right panel) displays samples of all source distribution models with Ns = 4. We note that there are four clusters of points, 
with the centroids of these clusters coinciding (approximately or better) with the true location of the four actual sources. 
 
Figure 2 shows the marginal posterior distribution (histogram) of the parameters (xs, ys) [source location] and qs [emission 
rate] for each of the four discrete sources identified in Figure 1 (right panel). The posterior mean and standard deviation, as 
well as the lower and upper bounds for the 95% HPD interval, of the parameters for each of these four identified discrete 
sources are summarized in Table 1. For this example, it is seen that generally the estimates for the source parameters are 
good and, certainly the true values of the parameters (when these are known) lie within the stated errors.  
 
Table 1. The posterior mean, posterior standard deviation, and lower and upper bounds of the 95% HPD interval of the source location (xs, ys) 

and emission rate qs of each of the four sources identified in Figure 1 (right panel). 
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Figure 2. Histograms for the three parameters, alongwind location xs, crosswind location ys, and emission rate qs that characterize the four 
sources identified in Figure 1 (right panel). In each frame, the solid vertical line indicates the true value of the parameter (if known) and the 

dashed vertical line corresponds to the best estimate of the parameter obtained as the posterior mean of the associated marginal posterior 
distribution. 

 
 
CONCLUSION 
We have developed and tested an innovative Bayesian method for source reconstruction for the difficult case when the 
number of sources is unknown a priori. The source reconstruction methodology has been successfully validated against a real 
dispersion field experiment involving a multiple-source release with measurements of the resulting concentration field 
obtained from an array of detectors. The example illustrates the effectiveness of the proposed methodology and demonstrates 
the reliable determination of the number of sources and estimation of the source parameters (along with the associated 
uncertainties) corresponding to each of the identified sources. 
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