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VALIDATION OF A BAYESIAN INFERENTIAL FRAMEWORK FOR MULTIPLES  OURCE
RECONSTRUCTION USING FFT-07 DATA

Eugene Yee
Defence R&D Canada — Suffield, Medicine Hat, Albe@anada

Abstract: This paper applies a Bayesian probabilistic erfiéial framework to the difficult problem of thetiesation of the parameters of an
a priori unknown number of sources, using a limited nunabeisy concentration data obtained from an aoaynetwork) of sensors. To
this purpose, Bayesian probability theory is usedidrmulate the full joint posterior probability mgty function for the number of
(unknown) sources and for the parameters (e.gatitwt, emission rate, source on and off times) tiestcribe each source. A simulated
annealing algorithm, applied in conjunction withexersible-jump Markov chain Monte Carlo technigiseused to draw random samples
from the posterior probability density function.elmethod is validated using a real dispersion éxyet involving a release of a propylene
tracer from four discrete sources. This experimeas conducted under a multinational cooperafising Sensor|nformation from
ObservingNetworks (FUSION) Field Trial 2007 (FFT-07).
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INTRODUCTION

The development of increasingly more sophisticadedsing technologies for the monitoring of the ewmiation of
hazardous contaminants [e.g., chemical, biologicakdiological (CBR) agents, toxic industrial matksjiaeleased into the
turbulent atmosphere has generated interest iizingl this information for the reconstruction ofetltontaminant sources
responsible for the observed concentration pattdiore specifically, in public security applicatiof countering terrorist
incidents involving the covert release of a CBR agena densely populated urban centre, a criticaliregqnent is the
characterization of the unknown source(s) followavgnt detection by a network (or, array) of CBR eensThe sensors are
placed at different points in space within a destgd region in order to function as detectors/naosito provide quantitative
measurements of the concentration of various anx@ddres of contaminants.

For example, the Department of Homeland Security$Phas deployed (albeit sparse) arrays of biokgigent sensors in
31 (with plans to expand to 120) cities acrossihited States as part of the BioWatch program ireotd provide detection
and warning of a covert bioterrorism event. In domtext of homeland security, the BioWatch prograam provided the
impetus for recent research efforts directed towdtle source reconstruction problem for deternomatf the location,
emission rate and other characteristics of unknseurce(s) of contamination. Further motivationrievided by a network
of 40 radiological detectors that has been setaup werification tool for the Comprehensive Test Bagaty (CTBT) in
order to provide world wide monitoring of radioaegtinoble gases that can be used potentially forceolocalization and
characterization of a clandestine nuclear test.

To address the problem of source reconstructioprobabilistic approach using a Bayesian infererg@dleme has been
developed, refined and generalized over the pastrakeyears by the author and colleagues: (1) epipdn of the
methodology to complex environments (inverse disiperin built-up environments) has been developed'ee E. (2006)
and Keats Aet al (2007a); (2) generalization of the methodologyléal with a non-conservative scalar has been destri
by Keats A.et al (2007b); and, (3) application of the methodologysburce reconstruction for long-range dispersion o
continental scales has been demonstrated sucdgssefiYlee E.et al (2008). Yee E. (2007) generalized the methodotogy
the reconstruction of multiple sources when the Ipemof sources waaown a priori. Finally, Yee E. (2008) developed the
theory underlying the application of a Bayesian piilistic inferential framework for addressing theblem of source
reconstruction for the difficult case of multipleusces when the number of sourcesriknown a priori.

The objective of this paper is to use some new eatnation data, measured by a sensor array corgsistil00 detectors for
releases involving multiple sources, to test thecedure proposed by Yee E. (2008) for multiple seueconstruction for
the case when the number of sources is unkreowriori. Furthermore, the computational framework used ég E. (2008)
for sampling from the posterior distribution of theurce parameters is significantly improved indheent paper.

BAYESIAN INFERENCE FOR SOURCE RECONSTRUCTION

In this paper, we apply Bayesian probability thetryaddress the problem of source reconstructiothitWthe context of

this problem, Bayes’ theorem yields the followinguri:
p(DIT)

wherel is the background (contextual) information avaiabi the problem (e.g., model that defines the rimgpfrom a
source distributiors to the concentratio®, background meteorology). The various factors #pgiear in equation (1) have
the following interpretation. Firstlyp(O|l) is the prior probability density function (PDFrfa proposition (or, hypothesis)
about the source, predicated on the contextuatritdtion specified by, with “|” denoting “conditional upon”. Secondly,
p(D|B,l) is the likelihood function and is the probabilityat we would have observed the concentration Daih © were
known exactly (viz., the source distribution is k). Thirdly, p(D|l) is referred to as the evidence and, in our case, lis
simply a normalization constant. Finally(©|D,!) is the posterior PDF for the propositi®nabout the source, in light of the
new information introduced through the newly acegdiconcentration datB. Becausey(D|l) is simply a normalization
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constant, the problem for the specification of plosterior PDF 0B reduces to the assignmentpg®|l) (prior distribution)
andp(D|6,!) (likelihood function).

Before we can proceed further, we need to be explimuto. In this paper, we focus on a source distribugassociated
with N transient point sources with theth source located at vector positixyy and with source activation and deactivation
timesTbk and Tek, respectively, between which the source is engith a constant release r&de (k = 1, 2, ...,Ny). The
source distribution has the following explicit farm

z\“s
S t) =Y Qro(x —xo ) [H(t —Ty) — H(t —T))]. (2)
k=1
whereH(s) andd(s) denote the Heaviside step and Dirac delta funstioespectively. Now, we can assemble the parasnete
for this particular source distribution into théldéaving source parameter vector:

0= (Noxo1, TLTH Q1o X, T TN, Q) € ROVTL (3)

With this background, the problem of source reautsion reduces to the following: estim&egiven the concentration data
D =(dy, dy, ... ,dy) whereN is the number of concentration data.

The posterior PDRp(O|D,l) embodies the state of knowledge about the sopatemeters, given the prior information
encoded in p(©|l) and the newly acquired concentration datathe latter of which modulates our prior beliebbab©
through the likelihood functiop(D|6,1). In this paper, the posterior PDF is specifiedadi®ws (to within a normalization
constant):

p(OD. 1) = p(N, 0y, |D.1)
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Here,l denotes the indicator functio@; is theJ-th model concentration (and is a function of therse distribution encoded

in the parameter vectd®), ando; is the noise standard deviation corresponding ¢oJith datum (and incorporates the
effects arising from model error, measurement naied stochastic uncertainty associated with etdher C;).

(4)

*Ip(Xe ) Lty M) (TF)

In equation (4), the prior on the number of sourdeis chosen to be a binomial distribution with pargeng” (binomial
rate) wherep' L1 [0, 1] and with a domain of definition betwedlmin and Ngmax (minimum and maximum number of
sources, respectively). The prior on the emissate is chosen to be a Bernoulli-uniform mixture,hwitdefined as the
probability that the source is turned on &g, defined as tha priori upper bound on the expected emission rate. Tloe pri
on the source location is chosen to be unifornt)(Baer some spatial regidd that is assumed to contain the contaminant
sources. The priors on the source activation (o) @deactivation (off) times for thieth source are chosen to be uniform
over fto, Tmad and [TeX, Tmayl, respectively, wherg is a lower bound on the time at which the sourcs taned on an@iymay

is an upper bound on the time at which the soue twrned on or off. Note that the prior for therse off time explicitly
encodes the fact that the time #th source is turned off must occur after it hasrb®irned on. Finally, a Gaussian form has
been used for the likelihood function in equatidh (

COMPUTATIONAL FRAMEW ORK

This section describes briefly the computationalcpdures that were used for extracting the souacanmeter estimates
required for event reconstruction. The reader ferred to Yee Eet al (2008) and Yee E. (2008) for a more complete
description of the computational methodology. Thare two major issues in the computational framé&waypplied to
Bayesian inference for source reconstruction thatie be addressed: namely, (1) a computationtiyjent methodology
for the computation of the source-receptor relatiom required in the determination of the likelidofunction, and (2) a
methodology for sampling from the posterior disitibn for the source parameters.

Fast computation of the source-receptor relationsipi

The likelihood function is not a closed-form expmies and its evaluation is computationally expeasiwing to the fact that
C;(Jd =1, 2, .. ,N) needs to be determined for a given source digtab ©. Moreover, a simulation-based posterior
inference using Markov chain Monte Carlo samplinquiees a large number of computations of the sergceptor
relationship to be undertaken. In consequencestaiad efficient technique for performing compwas of the source
receptor relationship (for a given source distithut©) is required to facilitate the rapid sampling frahe posterior
distribution. To this purpose, Keats &t al (2007a) and Yee Eet al (2008) described a computationally efficient
methodology for determination of the source-receptationship using an adjoint representatiortfiés relationship.
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Markov chain Monte Carlo sampling

All the information arising from the application Blayesian probability theory to the problem of seureconstruction is
embodied in the posterior PDF @f The posterior quantities of interest are expematalues op(©|D,l), which necessarily
involves an integration in a potentially high-dirsenal hypothesis space. One method for overcorthirgy “curse of
dimensionality” is given by the application of Mask chain Monte Carlo (MCMC) algorithms for posteriamgpling. To
this purpose, Yee E. (2008) described the formutatf a reversible-jump MCMC (RIMCMC) algorithm applieith
parallel tempering for generating samples frompbsterior distribution given in equation (4).

The objective of MCMC sampling is to construct anikary Markov chain whose stationary (or, invaripdtstribution is
the posterior distribution @. To summarize, the Markov chain consists of a erqe of state®® (t = 0, 1, 2, ... ) resulting
from individual updates consisting of three basioves: (1) dimension-changing movkg involving the creation of a
source atom at a random location, or annihilatibram existing source atom; (2) fixed-dimension m®i involving
updates of the emission rates of the source atmimg Gibbs sampling; and, (3) fixed-dimension moigsinvolving
updates of the location, source on and off timethefsource atoms using Metropolis-Hastings (M-&thgling. The state
vectoro® of the Markov chain at iteratiarl is updated to the state vec@P at timet using the following procedure:

1. Specify the valuesN min, Ns max Qmaxe Tmax to v» P) Which definep(o1).
2. Choose an initial sta@® for the Markov chain by sampling fropol|l).

3. Fort [I{1, 2, ... Luppes, conduct the following sequence of moves:

Mo

Mg, M g0 (5)

ptt-n Ao g
- ok
whereO: andO. denote some intermediate transition states betiteetionst-1 andt.

To improve the “speed” with which a Markov chaiauverses the hypothesis space (or, to increase ittiegnmmate of the
chain in the hypothesis space), Yee E. (2008) impleed a form of parallel tempering based on a dpetis-coupled
MCMC algorithm. In this approach,Markov chains are run in parallel, each with dedént stationary distribution. These
chains are run simultaneously, but occasionallyap@sal is made to swap the states of two randaeligcted chains. In
consequence, the states in the “ladder” of Markuairts can swap positions with a certain acceptanakability as each
chain equilibrates. In this study, rather than agmarallel tempering scheme, we employ a relataed &mpler) simulated
annealing scheme to facilitate chain mobility i thypothesis space. In this scheme, we considemaemble oNem
(typically between 50 and 200) source distributi¢ars source molecules) that have been randomlyrdfeom the following
modified distribution:

m(OD. 1) x p(O[1)p (D]6, I). (6)

The samples will be labelle@ (), with 2 [1[0,1] k=1, 2, ... Npem). Note thatpy(©|D,1) = p(O]l) (prior distribution of©)
andpy(6|D,l) = p(6|D,l) (posterior distribution o®). In this framework, it is useful to interpret tharametei as an inverse
temperaturd (so,A = 1/T), with A [J[0,1] implying T [1[1, 00 ]. The posterior distribution corresponds to thageraturer
= 1, whereas the modifiggy(6|D,l) corresponds to “heating” the posterior distribotio a temperatur€ = 1/A > 1 which
results in a flattening of the distribution.

When the stochastic sampling scheme beginsiand (infinite temperature), we randomly drdNy,., source molecules
6(0) k=1, 2, ... Nmem from po(OID,I) (prior distribution). Given an ensemble Nf., source molecule®,(}) that has
achieved equilibrium (at temperatufe= 1) with respect to the modified posterip(©|D,l), an ensemble dfiey, SOUrce
moleculesO(A+51) that is consistent with,.;(0|D,l) (at the reduced temperature= 1/(.+35)), 5A > 0) can be obtained by
using the weighted resampling method (see Gamebnamd H. F. Lopes, 2000) applied@() (k =1, 2, ... Nmemn). An
annealing schedule far [1[0,1] is required for the simulated annealing. Histpaper, we applied simulated annealing with
200 values ot uniformly spaced in the interval [0, 0.05] and 4@0ues of. geometrically spaced in the interval (0.05,1].
This gentle annealing schedule allows the ensenfilg,.,, source molecules to transition slowly through réeseof quasi-
equilibrium states from the prior distributioh € 0, or infinite temperature) at one end of theealing schedule to the
posterior distribution)( = 1, or unit temperature) at the other end of sbhkedule. Whe. = 1, the annealing phase is
complete and probabilistic exploration of the hyastis space proceeds (for e&th,, source molecules in the ensemble) in
accordance to the scheme summarized in equatioTi{®) annealing phase of the scheme, correspondihd 1[0,1), is
associated with the burn-in phase of the algoritththen)\ = 1, the MCMC algorithm has reached an equilibriatmyhich
point the probabilistic exploration correspondinghie sampling from the posterior distribution sgiThese samples drawn
from the posterior distribution can be used to makerences about all characteristics of the soyammeters (e.g.,
posterior means, variances, and highest postdastitaition (HPD) intervals).

EXAMPLE: APPLICATION OF METHODOLOGY

In this section, we apply the source reconstructi@thodology to a real dispersion data set; nambg/FUsing Sensor
Information fromObservingNetworks (FUSION) Field Trial 2007 (FFT-07). The eximents in FFT-07 were carried out in
September 2007 at Tower Grid on US Army Dugway Rg\Ground. In these experiments, the tracer gasl wgas
propylene (GHg). The concentration detectors used were fast-respaligital photo-ionization (dPID) detectors. Tdes
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detectors give a frequency response of 50 Hz witemsitivity of about 0.025 parts per million (ppiwy volume of

propylene. In FFT-07, a network of concentratioied®mrs was used, consisting of a total of 100 dPdranged in a
staggered configuration consisting of 10 rows ofdefectors. The rows of detectors were spaced Bpart. The spacing
between detectors along each row was 50 m. Thalbyalongwind) length and (crosswind) width of tihetector array were
450 m and 475 m, respectively. Three-dimensiondD)3onic anemometers were arranged on three 3&timed towers

along a transect parallel to the (alongwind) lerdjthension and midline of the concentration deteatcay.

This example involves four continuously emittingismes. We used 62 detectors in the array for thecednversion. All the
detectors in the array that measured a signifigar@th-zero mean concentration were used for thenouction, as well as a
number of detectors for which the measured mearcerdration was nominally zero. In this example, tmean
wind direction was normally incident to the detecaoray. The proposed stochastic sampling algorittas applied with
Nsmin = 1, Nsmax = 8, p = 1/7,y = 0.25,Qmax = 100 g &, and prior bounds for location of any source wastained in the
domainD = [0,100] x [0,500] m (constraining thg andys locations of the sources). An ensembl®&gf,,= 50 members of
source distribution model® were drawn from the prior distribution and used tloe simulated annealing phase of the
algorithm. Afterh = 1 was achieved, 1000 further iterations of th1@WC algorithm were applied to each of these source
distribution model members during the probabilistiploration phase of the algorithm to give 5008fngles of source
distribution models drawn from the posterior disttionp(©|D,1).
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Figure 1. Left panel: Trace plot (top) of the numlof discrete sourcds; in the source distribution model samples drawmfggo|D,|)
during the probabilistic exploration phase of thechastic sampling algorithm, and the posteriotrithigtion (bottom) for the number of
sourcesp(Ns) = p(N4D,I) . Right panel: Density plot consisting of samplesatirce distribution models obtained fy= 4 (most probable
value for number of sources) projected onto #3ey{ subspacex{andysare in the alongwind and crosswind directions, eepely).

Figure 1 (left panel, top) shows a trace plot fa@ humber of discrete sources in a source disimibuhodel sample against
the sample (or, iteration) number. From this pidas seen that the samples of source distributiodets drawn fronp(6|D,1)
generally mix well ovelNg Note that annihilation moves for models frdfg= 4 to 3 do not occur. However, dimension-
changing moves from; = 4 to 5 (and, vice-versa), as well as higher-otdarsitions such as frods = 6 to 7 and its reverse
occur also (albeit with smaller probability). Figut (left panel, bottom) displays the marginal past distribution for the
number of sources. Note that the most probable ruwisourcesNs = 4) is favoured with a probability of about 0.6glre

1 (right panel) displays samples of all sourceritlistion models withiNs = 4. We note that there are four clusters of ppints
with the centroids of these clusters coincidingofagimately or better) with the true location oétfour actual sources.

Figure 2 shows the marginal posterior distributibistogram) of the parameters,(ys) [source location] ands [emission
rate] for each of the four discrete sources idaatifn Figure 1 (right panel). The posterior mead atandard deviation, as
well as the lower and upper bounds for the 95% HifRBrval, of the parameters for each of these fdantified discrete
sources are summarized in Table 1. For this exanitpie seen that generally the estimates for the&ce parameters are
good and, certainly the true values of the paramagtehen these are known) lie within the statedrsrr

Table 1. The posterior mean, posterior standaréatien, and lower and upper bounds of the 95% HRErval of the source locatioRrs(ys)
and emission ratg; of each of the four sources identified in Figur@idht panel).

Parameter  Mean  Standard Deviation  95% HPD | Actual

3.0
1710

1 (m) 3.0 6.0
Yo (1) 170.9 0.3
1

g lgs ) s2 0.6

s (m) AR 1.6
Yo L) 240.5 0.4
1 =1

g fg st
s

ro(m) 237 5.2 (12.1,32.1) 30.0
#e(m) 3134 0.9 (311.8,315.2) | %129
golgs ) 11 0.4 (3.3.4.9) 38

26.0
3844
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Figure 2. Histograms for the three parameters,gaiamd locationXs, crosswind locatiolys, and emission ratés that characterize the four
sources identified in Figure 1 (right panel). Ickeérame, the solid vertical line indicates theetualue of the parameter (if known) and the
dashed vertical line corresponds to the best estinfahe parameter obtained as the posterior roktire associated marginal posterior

distribution.

CONCLUSION

We have developed and tested an innovative Bayesithod for source reconstruction for the difficaétse when the
number of sources is unknowarpriori. The source reconstruction methodology has beeressfully validated against a real
dispersion field experiment involving a multiplessoe release with measurements of the resultingesdration field
obtained from an array of detectors. The exampletiates the effectiveness of the proposed metbgg@nd demonstrates
the reliable determination of the number of souraed estimation of the source parameters (along thié associated
uncertainties) corresponding to each of the idietiources.
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