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Malicious or accidental release in an urban area
What area should the first responders cordon off or evacuate?
What are the source characteristics? - uncertainty
Where will the plume spread?
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Inverse modelling

1. Make a first guess of the source characteristics (Q, Xs, Ys)

2. First guess  forward model model-predicted 
concentrations

3. Model-predicted concentrations vs. measured concentrations 
Minimisation algorithm  `best’ estimate of source 
characteristics. 

4. `Best’ estimate  forward model  predicted plume.
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Inverse problem: extracting source characteristics 
from a set of concentration measurements
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Forward model

Forward model model-predicted concentrations

Gaussian plume model - well known and understood

Inputs:  source strength and position, wind speed and stability

We assume

– one continuous point source

– a ground level release, i.e. Zs = 0

– concentration measurements at ground level

2

2

( )
exp

2

s

Y Z Y

Y YQ
C

u   

  
  

 
6



Optimisation

Minimise a cost function

Concentration measurements   Co Model-predicted concentrations   Cm

Measures the discrepancy between the measured and model-predicted concentrations

Minimise J, which is the same as finding the values of the source 
characteristics for which the gradient of J is zero. This is your `best’ 
estimate of the source characteristics.

Least squares fit plus error weighting which leads to an uncertainty 
estimate of the source characteristics.
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Need a rapid algorithm

Time is important in 
emergency situations

Estimate of uncertainty 
associated with the 
`best’ estimate from 
second derivative of the 
forward model w.r.t the 
source characteristics
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FORWARD MODEL

First guess of source characteristics

OPTIMISATION

Model-predicted concentrations

measured 
concentrations

FORWARD MODEL

Model-predicted concentrations

OPTIMISATION

New estimate of source characteristics

New estimate of source characteristics

Converged? Yes, best estimateNo



Sources of error

• Measurement error the accuracy of the concentration

measurement from the sensor 

may be known

• Model error how good is the model at representing reality? 

can only estimate

• Sampling error this is dependent on the averaging time of 
the data due to the natural variability of 
the concentrations

likely to dominate

Could prevent the inverse algorithm from making 
a good estimate of the source characteristics
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Wind tunnel data
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Gaussian plume model tuned 
to the wind tunnel data

Difference due to model 
error and instrument 
error?
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Sampling error

How to quantify the sampling error associated with taking a 

short time average to estimate the true mean in a turbulent flow 

Standard deviation of the shorter time mean estimate of the 

true mean concentration
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t is the shorter averaging time

T is the total time length

n is the no of shorter averaging 
time samples

= mean concentration 
averaged over time t

t

iC = true mean concentration T
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Equivalent 
full scale
Uref =10 m/s
H = 500m 12

ref AVU T

H

16 mins 2.5 hrs 5 hrs

20% uncertainty on 
15 min average

= the uncertainty in the 
short time mean estimate 
compared to the true 
mean concentration
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60% uncertainty 
on 1 min average

70% uncertainty on 
10 sec average

Wind tunnel
Uref =2.5 m/s
H = 1m

Sampling error



Inverse modelling - WT data

27 data points from 
wind tunnel data

The true values of (Q, Xs, Ys) 
do not lie within the 
uncertainty range of the 
estimates. 13

Source 
parameter

True 
value

First 
guess

units

Q 0.1 1 m3 s-1

Xs -47 -24 m

Ys 47 22 m

Source 
parameter

Estimate Uncertainty units

Q 0.075 0.002 m3 s-1

Xs -30.37 1.54 m

Ys 43.70 0.20 m



Inverse modelling - WT data

Sub set of 4 data points 
where the data values were 
accurately predicted by the 
Gaussian plume model

The true values of (Q, Xs, Ys) 
lie within the uncertainty 
range of the estimates.
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Source 
parameter

True 
value

First 
guess

units

Q 0.1 1 m3 s-1

Xs -47 -24 m

Ys 47 22 m

Source 
parameter

Estimate Uncertainty units

Q 0.097 0.010 m3 s-1

Xs -46.57 7.84 m

Ys 46.51 1.37 m



Conclusions
• Characterising the errors is essential for inverse modelling 

– can quantify the measurement error

– can estimate the model error for the wind tunnel data 

– however, it is sampling error that appears to be the most important, it could 
potentially hamper the inverse algorithm from finding the `best’ estimate.

• We have a method for estimating the uncertainty due to sampling error 
that can feed into the inverse algorithm – need to test it.

• Other studies we have done with synthetic data showed that 
measurements scattered about the plume in a square configuration lead 
to better estimates of the source characteristics because they contain 
direct information on the lateral spread of the plume.

Further work

• Test the inverse algorithm with a different forward model – the network 
model approach for urban dispersion.

• Use wind tunnel data collected using rectangular blocks to represent 
buildings in an urban area for validation.
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Thank you for your attention
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