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Introduction
• Flow regimes (Oke, 1988)
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a) Isolated roughness regime (h/b < 0.3)

b) Wake interference regime (0.3 < h/b < 0.7) c) Skimming regime (0.7 < h/b)
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Introduction
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• Aliaga et al. (1994) &  Hishida (1996)

– The local heat transfer coefficient (LHTC) 
is closely related to the reattachment & 
separation of the flow

 Isolated Roughness Regime

• The maximum LHTC coincides with the 
reattachment point

• The minimum LHTC overlaps with the 
separation point

Wake Interference Regime

• Monotonic increment of LHTC

• No peak or trough

• Maximum locates on the windward side



Objectives

• Examine the pollutant dispersion behavior 
along the street inside the street canyon

• Elucidate the mechanism of pollutant removal 
through the roof level of the street canyon

as a function of the building-height-to-street-
width (aspect) ratio (AR) h/b

5Department of Mechanical Engineering
The University of Hong Kong



Analogue to Pollutant Transfer
• Convection-Diffusion Equation

– θ is the temperature

– α is the thermal diffusivity

• Mass Transport Equation

–  is the mass/pollutant concentration

– κ is the mass diffusivity
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Computational Fluid Dynamics (CFD)

• Large-eddy simulation (LES)
– Two-length-scale modeling

• Large eddies & small eddies

– One-equation subgrid-scale (SGS) model 

– Open-source CFD code OpenFOAM 1.6

• k-ε turbulence model
– One-length-scale modeling

– The Reynolds-averaged Navier-Stokes (RANS) 
equations with the renormalization group (RNG)

– Commercial CFD code FLUENT 6.3.26
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• Local Pollutant Transfer Coefficient (LES only)

• k-ε turbulence model

– NO subgrid-scale term

LTC Equation
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• Mean               
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• Molecular

• Kinematic viscosity      (= 10-5)

• Schmidlt No. (= 0.72)
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LES Model Description

• Domain of h = 1, b = 15 (AR = 0.0667), 11 
(0.0909), 4 (0.25)

Inlet

(periodic flow & 
zero pollutant 
concentration)

Outlet 

(periodic flow & 
open condition 
for pollutant)

Front 
(periodic)

Back
(periodic)

Top
(symmetry)
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k-ε Turbulence Model Description

• Domain with h = 1, b = 15 (AR = 0.0667), 11 
(0.0909), & 4 (0.25) 

Inflow

(velocity inlet & zero 
concentration)

Outflow

(outflow)

Upper (symmetry)

Fixed 
Concentration
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Model Validation

• Comparisons with Aliaga et al. (1994) results

• Nusselt Number as the parameter

• Data reduction due to different Reynolds 
number 
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Convert LTC to Nusselt Number (Nu)

• Aliaga et al. (1994)

• LES
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Reynolds Number (Re) 

Aliaga et al. (1994)

• AR = 0.25 = 1/4

• AR = 0.0909 = 1/11
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• AR = 0.25 = 1/4

• AR = 0.0909 = 1/11

Department of Mechanical Engineering
The University of Hong Kong

13



Normalized Nusselt Number (Nu/Rem)
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Model Validation (AR = 0.0909 = 1/11)
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Model Validation (AR = 0.25 = 1/4)
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CFD Results (AR = 0.0667 = 1/15)
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Reattachment Separation Reattachment Separation

LES simulation k-ε turbulence model



CFD Results (AR = 0.0909 = 1/11)
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Reattachment Separation Reattachment Separation

LES simulation k-ε turbulence model



CFD Results (AR = 0.25 = 1/4)
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LES simulation k-ε turbulence model

Wall jet Wall jet



Roof-level Pollutant Removal
(AR = 0.0667 = 1/15)
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Roof-level Pollutant Removal
(AR = 0.0909 = 1/11)
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Roof-level Pollutant Removal
(AR = 0.25 = 1/4)
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Conclusion
• Relationship between flow regimes & pollutant transfer 

coefficient

– Isolated roughness regime

• Maximum local pollutant transfer coefficient: Reattachment point

• Minimum local pollutant transfer coefficient: Separation point

– Wake interference regime

• Increasing local pollutant transfer coefficient from leeward side to 
windward side

• Roof level Pollutant Removal Mechanisms

– Isolated roughness regime

• Fresh air entrainment from the shear layer down to the street canyon

– Wake interference regime

• Turbulent diffusion through the roof level 
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