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Introduction
* Flow regimes (Oke, 1988)

a) Isolated roughness regime (h/b < 0.3)
-~ —

b) Wake mterference regime (0.3 < h/b < O 7) c) Skimming regime (0.7 < h/b)
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Introduction

200

e Maximum locates on the windward side

* Aliaga et al. (1994) & Hishida (1996)
— The local heat transfer coefficient (LHTC) | _““
is closely related to the reattachment & &3 “ s .
separation of the flow e h 22 X_P
> Isolated Roughness Regime oo Jae i
* The maximum LHTC coincides with the SNQR/“\“__M %
reattachment point ° saatve asince, ¢ Boundary
* The minimum LHTC overlaps with the el T‘a) _ layer
separation point Wall jet ’_:
» Wake Interference Regime Vs L
 Monotonic increment of LHTC A h
* No peak or trough b\ D ] &
7 : Y

Relative distance, X/e
= (b)
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Objectives

* Examine the pollutant dispersion behavior
along the street inside the street canyon

e Elucidate the mechanism of pollutant removal
through the roof level of the street canyon

as a function of the building-height-to-street-
width (aspect) ratio (AR) h/b




Analogue to Pollutant Transfer

* Convection-Diffusion Equation

o0 .00 _, 0%

ot . 2
ot J 6XJ @xj

— 6is the temperature
— o is the thermal diffusivity

¢ op _ 0%
at+ujax Kax

— ¢isthe mass/pollutant concentratlon
— Kk is the mass diffusivity
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Computational Fluid Dynamics (CFD)

e Large-eddy simulation (LES)
— Two-length-scale modeling
e Large eddies & small eddies
— One-equation subgrid-scale (SGS) model
— Open-source CFD code OpenFOAM 1.6

e k- turbulence model

— One-length-scale modeling

— The Reynolds-averaged Navier-Stokes (RANS)
equations with the renormalization group (RNG)

— Commercial CFD code FLUENT 6.3.26
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LTC Equation

e Local Pollutant Transfer Coefficient (LES only)
LPTC =<W ¢>+<W'¢">- <aa¢> <asgsa¢>

Mean<\W ¢>
" "
Fluctuation <W' @' >

I\/Iolecular<05%>
0z

kinematic viscosity
Schmidlt No.

Diffusivity =

 Kinematic viscosity V (= 107)
e Schmidlt No. (= 0.72)

Sub-grid scale <asgsg—?>

e k-£turbulence model

— NO subgrid-scale term
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LES Model Description

e Domainofh=1,b=15(AR=0.0667), 11
(0.0909), 4 (0.25)

Back Top /
(periodic) (symmetry)

/

Front
(periodik) Outlet

LR =

(periodic flow & 5h|| (periodic flow &
Y zerb pollut open candition
k cor : utant)
X

>
b Constant/Uniform
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k-€ Turbulence Model Description

e Domainwithh=1, b=15 (AR =0.0667), 11
(0.0909), & 4 (0.25)

Upper (symmetry)

Inflow
| Outflow

N Sh |
velocity inlet & zero

i (outflow)

oncentration)
5 1

h{ [

Fixed
Concentration

B
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Model Validation

 Comparisons with Aliaga et al. (1994) results

= =*H as the parameter

e Nusselt Number Nu=

* Data reduction due to different Reynolds
number
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Convert LTC to Nusselt Number (Nu)

e Aliaga et al. (1994)

LHTC <D LHTC x0.025
— G — G

Nu = G — — 0.9615LHTC
G k 0.026 G
e LES
LPTC x<H LPTC x1 LPTC
Nu = T T _ T _ T
T KT 10°/0.72 1.389x107°
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Reynolds Number (Re)

Aliaga et al. (1994) LES
U.D U-H
Re. =% Re; = TV T
1% =10_5kgm_15_1 1% =10_5kgm_1s_1
« AR=0.25=1/4 « AR=0.25=1/4
Ug =32m/s Ut =1.01715m/s
Dy =0.025m Ht =1m
e AR=0.0909=1/11 e AR=0.0909=1/11
Ug =38m/s Ut =1.27123m/s
DH =0.025m HT —1m
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Normalized Nusselt Number (Nu/Re™)

Nu=CRe™Pr"
C,Pr,n=Const
m=4/5
NUOCRe4/5

Nu

—————==CONSTANT
Re4/5
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Model Validation (AR = 0.0909 = 1/11)
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Model Validation (AR = 0.25 = 1/4)
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CFD Results (AR = 0.0667 = 1/15)

LES simulation k-£ turbulence model
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CFD Results (AR =0.0909 = 1/11)

k- turbulence model

LES simulation
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CFD Results (AR = 0.25 = 1/4)
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Roof-level Pollutant Removal
(AR = 0.0667 = 1/15)
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Roof-level Pollutant Removal
(AR =0.0909 = 1/11)




Roof-level Pollutant Removal
(AR = 0.25 = 1/4)




Conclusion

* Relationship between flow regimes & pollutant transfer
coefficient
— |solated roughness regime
 Maximum local pollutant transfer coefficient: Reattachment point
 Minimum local pollutant transfer coefficient: Separation point
— Wake interference regime

* Increasing local pollutant transfer coefficient from leeward side to
windward side

 Roof level Pollutant Removal Mechanisms

— |solated roughness regime

* Fresh air entrainment from the shear layer down to the street canyon
— Wake interference regime

e Turbulent diffusion through the roof level
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