Evaluation of DISPAL CFD model against Prairie Grass and Kit Fox Field dataset for neutral to stable atmospheric conditions

E. Demaël, S. Richard || Air Liquide R&D Claude et Delorme Research Centre

Context

- DISPAL is an eulerian CFD model using RANS / URANS approach to model atmospheric dispersion. It is:
- ✓ Used for consequences assessment of gaseous dispersion within Air Liquide Group
- ✓ Recognized by French regulatory authorities as Air Liquide 3D model to take into account obstacles on dispersion

Corresponding author emmanuel.demael@airliguide.com

- → Continuously enhanced and evaluated following standard procedures since 25 years
- → Recent focus on neutral to stable conditions

General settings:

✓ Standard k-ε turbulence closure model with specific treatment of C_{3ε} and Prt constants to take into account buoyancy effects (partly based on [Alinot and Masson, 2005])

- ✓ Wind and temperature profiles based on Monin-Obukhov similarity theory used to specify inlet and initial conditions
- Turbulent quantities profiles based on production-dissipation balance assumption
- ✓ Statistical parameters for performances evaluation exercise issued from [Chang & Hanna, 2004]:
- A MG: geometric mean bias, VG: geometric variance, FB: fractional bias, NMSE: normalized mean square error, FAC2: fraction of predictions within a factor two of observations

Project Prairie Grass

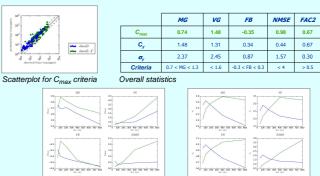
6

Objectives

- ✓ Validate the enhanced capability of DISPAL to maintain turbulent profiles along the computational domain for neutral to stable conditions
- ✓ Investigate the influence of Schmidt turbulent number on dispersion modeling

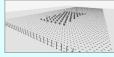
Information

- ✓ Diffuse passive tracer dispersion over a flat terrain
- ✓ Pasquill-Gilford classification built on energy budget method and wind profile reconstruction
- ✓ Trials excluded from the panel: 14, 32, 53, 58, 59
- Statistics performed for criteria
- C_{max} (arc-vise maximum concentration) C_y (cross-wind integrated concentration σ_y (cross-wind standard deviation)


Conclusions

- ✓ Deterioration of statistics with increasing distance (in part due to lowfrequency fluctuations effect)
- ✓ General trend to overestimation
- ✓ Best performances observed for neutral conditions but results for
- stable conditions improved compared to the previous DISPAL version
- Performances highly affected by Schmidt number value → Schmidt number around 0.7 gives better performances for all

Objectives

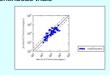

- classes (results showed here)
- Nevertheless, a good level of performances is reached

Main results

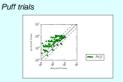
Statistical performances according to the distance from the release (left: for C_{max} ; right: for σ_v)

Kit Fox Field

✓ Validate the capability of DISPAL to handle heavy gas dispersion for various atmospheric stability conditions and for continuous and puff releases


Information

- ✓ CO₂ ground diffuse release on a rough area
- ✓ All trials simulated (URA & ERP / Continuous & Puff releases)
- Schmidt number sensitivity investigated
- ✓ Mesh sensitivity investigated (results showed on a 1M points mesh)
- ✓ Implicit roughness used for ERP trials
- ✓ Statistics based on dose quantity


Conclusions

- ✓ Good level of performances reached for continuous releases
- ✓ Significant underestimation of lateral cloud speeding for puff releases ✓Better agreement for URA trials \rightarrow ERP roughness need to be
- explicitly modeled or a larger roughness length is more suitable
- ✓ Schmidt number = 0.7 gives better performances

Main results for Cmax criteria Continuous trials

	MG	VG	FB	NMSE	FAC2		
25 m	1.13	1.71	0.18	0.47	0.62		
50 m	1.03	1.52	0.08	0.32	0.67		
100 m	1.02	1.41	0.08	0.32	0.72		
225 m	0.79	4.95	-0.03	0.13	0.89		
global	1.02	1.60	0.08	0.32	0.73		

		MG	VG	FB	NMSE	FAC2
	25 m	0.62	2.1	-0.4	0.51	0.61
	50 m	0.42	4.01	-0.73	1.21	0.53
	100 m	0.3	6.20	-0.98	1.62	0.31
	225 m	0.3	16.14	-0.99	2.55	0.22
	alobal	0.36	5.15	-0.85	1.41	0.42

Conclusions

→ An extended validation of DISPAL for the modeling of passive and heavy gas dispersion in stably stratified atmospheric boundary layer has been positively achieved

→A further model validation for elevated heavy gas releases is expected

References

Alinot C. and Masson C., 2005, k-& model for the atmospheric boundary layer under various thermal stratifications, Journal of Solar Energy Engineering, vol 127, 438 – 443 🖞 Chang J.C. and Hanna S. R., 2004, Air quality model performance evaluation, Meteorology and Atmospheric Physics, vol. 87, 167 - 196